Slide ruleThe slide rule (also known colloquially in the United States as a slipstick) is a mechanical calculator (one of the simplest analog computers) hand-operated by sliding two rulers to perform multiplication and division primarily, and possibly exponents, roots, logarithms, and trigonometry. It is not typically designed for addition or subtraction, which is usually performed using other methods, like using an abacus. Maximum accuracy for standard linear slide rules is about three decimal significant digits, while scientific notation is used to keep track of the order of magnitude of results.
Commutative propertyIn mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name of the property that says something like "3 + 4 = 4 + 3" or "2 × 5 = 5 × 2", the property can also be used in more advanced settings. The name is needed because there are operations, such as division and subtraction, that do not have it (for example, "3 − 5 ≠ 5 − 3"); such operations are not commutative, and so are referred to as noncommutative operations.
Decimal representationA decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: Here is the decimal separator, k is a nonnegative integer, and are digits, which are symbols representing integers in the range 0, ..., 9. Commonly, if The sequence of the —the digits after the dot—is generally infinite. If it is finite, the lacking digits are assumed to be 0.
QuotientIn arithmetic, a quotient (from quotiens 'how many times', pronounced ˈkwoʊʃənt) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division), or as a fraction or a ratio (in the case of a general division). For example, when dividing 20 (the dividend) by 3 (the divisor), the quotient is 6 (with a remainder of 2) in the first sense, and (a repeating decimal) in the second sense.
Egyptian fractionAn Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction above sums to . Every positive rational number can be represented by an Egyptian fraction.
00 (zero) is a number representing an empty quantity. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures. In place-value notation such as decimal, 0 also serves as a numerical digit to indicate that that position's power of 10 is not multiplied by anything or added to the resulting number. This concept appears to have been difficult to discover. Common names for the number 0 in English are zero, nought, naught (nɔːt), nil.
Method of complementsIn mathematics and computing, the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm (or mechanism) for addition throughout the whole range. For a given number of places half of the possible representations of numbers encode the positive numbers, the other half represents their respective additive inverses. The pairs of mutually additive inverse numbers are called complements. Thus subtraction of any number is implemented by adding its complement.
Lowest common denominatorIn mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions. The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: but it is not always the lowest common denominator, as in: Here, 36 is the least common multiple of 12 and 18.
Multiple (mathematics)In mathematics, a multiple is the product of any quantity and an integer. In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that is an integer. When a and b are both integers, and b is a multiple of a, then a is called a divisor of b. One says also that a divides b. If a and b are not integers, mathematicians prefer generally to use integer multiple instead of multiple, for clarification.
Binary operationIn mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two. More specifically, an internal binary operation on a set is a binary operation whose two domains and the codomain are the same set. Examples include the familiar arithmetic operations of addition, subtraction, and multiplication. Other examples are readily found in different areas of mathematics, such as vector addition, matrix multiplication, and conjugation in groups.