Kan extensionKan extensions are universal constructs in , a branch of mathematics. They are closely related to adjoints, but are also related to and . They are named after Daniel M. Kan, who constructed certain (Kan) extensions using in 1960. An early use of (what is now known as) a Kan extension from 1956 was in homological algebra to compute derived functors. In Categories for the Working Mathematician Saunders Mac Lane titled a section "All Concepts Are Kan Extensions", and went on to write that The notion of Kan extensions subsumes all the other fundamental concepts of category theory.
Dinatural transformationIn , a branch of mathematics, a dinatural transformation between two functors written is a function that to every object of associates an arrow of and satisfies the following coherence property: for every morphism of the diagram commutes. The composition of two dinatural transformations need not be dinatural.
Functor represented by a schemeIn algebraic geometry, a functor represented by a scheme X is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is (up to natural bijections) the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F. The best known example is the Hilbert scheme of a scheme X (over some fixed base scheme), which, when it exists, represents a functor sending a scheme S to a flat family of closed subschemes of .
Product categoryIn the mathematical field of , the product of two C and D, denoted C × D and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors. The product category C × D has: as : pairs of objects (A, B), where A is an object of C and B of D; as arrows from (A1, B1) to (A2, B2): pairs of arrows (f, g), where f : A1 → A2 is an arrow of C and g : B1 → B2 is an arrow of D; as composition, component-wise composition from the contributing categories: (f2, g2) o (f1, g1) = (f2 o f1, g2 o g1); as identities, pairs of identities from the contributing categories: 1(A, B) = (1A, 1B).
Spectral spaceIn mathematics, a spectral space is a topological space that is homeomorphic to the spectrum of a commutative ring. It is sometimes also called a coherent space because of the connection to coherent topos. Let X be a topological space and let K(X) be the set of all compact open subsets of X. Then X is said to be spectral if it satisfies all of the following conditions: X is compact and T0. K(X) is a basis of open subsets of X. K(X) is closed under finite intersections. X is sober, i.e.
Abstract nonsenseIn mathematics, abstract nonsense, general abstract nonsense, generalized abstract nonsense, and general nonsense are nonderogatory terms used by mathematicians to describe long, theoretical parts of a proof they skip over when readers are expected to be familiar with them. These terms are mainly used for abstract methods related to and homological algebra. More generally, "abstract nonsense" may refer to a proof that relies on category-theoretic methods, or even to the study of category theory itself.
Pullback (category theory)In , a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the of a consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X ×f, Z, g Y. Usually the morphisms f and g are omitted from the notation, and then the pullback is written P = X ×Z Y. The pullback comes equipped with two natural morphisms P → X and P → Y. The pullback of two morphisms f and g need not exist, but if it does, it is essentially uniquely defined by the two morphisms.
FunctorIn mathematics, specifically , a functor is a mapping between . Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which is applied.
CokernelThe cokernel of a linear mapping of vector spaces f : X → Y is the quotient space Y / im(f) of the codomain of f by the image of f. The dimension of the cokernel is called the corank of f. Cokernels are to the , hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain).
Tensor product of modulesIn mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g. multiplication) to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group.