Extension de KanUne extension de Kan est une construction catégorique universelle qui apparaît naturellement dans de nombreuses situations. Elle tient son nom du mathématicien Daniel Kan, qui a défini de telles extensions à partir de limites. Les autres constructions universelles (limites, adjonctions et foncteurs représentables) peuvent s'écrire en termes d'extensions de Kan, et réciproquement. L'importance de ces extensions est la plus manifeste en théorie des catégories enrichies.
Dinatural transformationIn , a branch of mathematics, a dinatural transformation between two functors written is a function that to every object of associates an arrow of and satisfies the following coherence property: for every morphism of the diagram commutes. The composition of two dinatural transformations need not be dinatural.
Functor represented by a schemeIn algebraic geometry, a functor represented by a scheme X is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is (up to natural bijections) the set of all morphisms . The scheme X is then said to represent the functor and that classify geometric objects over S given by F. The best known example is the Hilbert scheme of a scheme X (over some fixed base scheme), which, when it exists, represents a functor sending a scheme S to a flat family of closed subschemes of .
Product categoryIn the mathematical field of , the product of two C and D, denoted C × D and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors. The product category C × D has: as : pairs of objects (A, B), where A is an object of C and B of D; as arrows from (A1, B1) to (A2, B2): pairs of arrows (f, g), where f : A1 → A2 is an arrow of C and g : B1 → B2 is an arrow of D; as composition, component-wise composition from the contributing categories: (f2, g2) o (f1, g1) = (f2 o f1, g2 o g1); as identities, pairs of identities from the contributing categories: 1(A, B) = (1A, 1B).
Spectral spaceIn mathematics, a spectral space is a topological space that is homeomorphic to the spectrum of a commutative ring. It is sometimes also called a coherent space because of the connection to coherent topos. Let X be a topological space and let K(X) be the set of all compact open subsets of X. Then X is said to be spectral if it satisfies all of the following conditions: X is compact and T0. K(X) is a basis of open subsets of X. K(X) is closed under finite intersections. X is sober, i.e.
Abstract nonsenseAbstract non-sens est une expression anglaise utilisée en mathématiques pour décrire certains raisonnements et concepts en théorie des catégories. Le terme semble avoir été introduit par Norman Steenrod. À l'origine, elle qualifie les raisonnements introduits sur les catégories généralisant les considérations antérieures sur des listes d'exemples. Elle concerne la chasse au diagramme, l'application des propriétés universelles, la naturalité des foncteurs, l'utilisation du lemme de Yoneda...
Produit fibréEn mathématiques, le produit fibré est une opération entre deux ensembles munis tous deux d'une application vers un même troisième ensemble. Sa définition s'étend à certaines catégories en satisfaisant une propriété universelle de factorisation de diagrammes, en dualité avec la somme amalgamée. Le produit fibré est utilisé notamment en géométrie algébrique pour définir le produit de deux schémas, ou en topologie algébrique pour construire, à partir d'un espace fibré (tel un revêtement), un autre espace de même fibre, le , en remontant le long d'une application entre les deux bases, d'où l'appellation en anglais pullback (« tiré en arrière ») parfois utilisée en français.
FoncteurDans la théorie des catégories, un foncteur est une construction transformant les objets et morphismes d'une catégorie en ceux d'une autre catégorie, d'une façon compatible. On parle alors d'une construction fonctorielle ou de fonctorialité. Une telle construction est donc un morphisme entre deux catégories. Historiquement, les foncteurs furent introduits en topologie algébrique, associant aux espaces topologiques et aux applications continues des objets algébriques tels que les groupes d'homotopie et les morphismes de groupes, permettant ainsi un véritable calcul d'invariants caractérisant ces espaces.
ConoyauEn mathématiques, le conoyau d'un morphisme f : X → Y (par exemple un homomorphisme entre groupes ou bien un opérateur borné entre espaces de Hilbert) est la donnée d'un objet Q et d'un morphisme q : Y → Q tel que le morphisme composé soit le morphisme nul, et de plus Q est, en un certain sens, le plus "gros" objet possédant cette propriété. Souvent l'application q est sous-entendue, et Q est lui-même appelé conoyau de f. Les conoyaux sont les duaux des noyaux des catégories, d'où le nom.
Produit tensoriel de deux modulesLe produit tensoriel de deux modules est une construction en théorie des modules qui, à deux modules sur un même anneau commutatif unifère A, assigne un module. Le produit tensoriel est très important dans les domaines de l'analyse fonctionnelle, de la topologie algébrique et de la géométrie algébrique. Le produit tensoriel permet en outre de ramener l'étude d'applications bilinéaires ou multilinéaires à des applications linéaires.