Les logiques polyvalentes (ou multivalentes, ou multivaluées) sont des alternatives à la logique classique aristotélicienne, bivalente, dans laquelle toute proposition doit être soit vraie soit fausse. Elles sont apparues à partir des années 1920, surtout à la suite des travaux du logicien polonais Jan Łukasiewicz.
Elles sont principalement étudiées au niveau du seul calcul propositionnel et peu au niveau du calcul des prédicats.
Elles ont au début eu leurs heures de succès car elles répondaient, en lien avec la physique quantique, à une demande d'existence d'un état autre que le vrai ou le faux. Ensuite, elles ont suscité un intérêt mathématique indépendant, non lié aux enjeux philosophiques, lorsque Chen Chung Chang a formulé le concept de . Aujourd'hui, elles sont principalement étudiées dans le contexte de la mise en question générale des principes du tiers exclu et de contradiction, donnant ainsi naissance aux logiques partielles et paraconsistantes.
Elles ont des parentés avec
la logique intuitionniste qui n'accepte pas le tiers exclu, car elle identifie la vérité mathématique au démontrable.
les logiques modales.
les modèles de Kripke de la logique intuitionniste, inspirés du forcing.
la logique floue, qui ajoute à la polyvalence la prise en compte combinée de l'imprécision et de l'incertitude. Plus précisément cette logique est une logique infinie non dénombrable-valente car la valeur de vérité d'une proposition est un réel compris entre 0 et 1.
Un exemple tiré de la physique quantique, est le paradoxe du chat de Schrödinger. On peut se demander dans quel état est le chat à la fin de l'expérience, quand on ne l'a pas encore regardé : est-il mort, est-il vivant ? Nul ne le sait (approche épistémique) et surtout nul ne peut le démontrer (approche intuitionniste). Les tenants de la logique polyvalente ont alors fait intervenir un nouvel état, le chat est mort|vivant (indéterminé), alors qu'en termes de modèle de Kripke, on dirait qu'il y a trois mondes possibles, un monde où le chat est vivant, un monde où le chat est mort et un monde où on ne peut dire si le chat est vivant ou mort.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Fuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.
Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A.
In linguistics and philosophy, a vague predicate is one which gives rise to borderline cases. For example, the English adjective "tall" is vague since it is not clearly true or false for someone of middling height. By contrast, the word "prime" is not vague since every number is definitively either prime or not. Vagueness is commonly diagnosed by a predicate's ability to give rise to the Sorites paradox. Vagueness is separate from ambiguity, in which an expression has multiple denotations.
La théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
En logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Virtual marketplaces on the Web provide people with great facilities to buy and sell goods similar to conventional markets. In traditional business, reputation is subjectively built for known persons and companies as the deals are made in the course of tim ...
2009
In this paper, we propose a new category of current-mode Łukasiewicz OR and AND logic neurons and ensuing logic networks along with their ultra-low power realization. The introduced circuits can operate in a wide range of the input signals varying in-betwe ...
In this paper the capability of PSO is employed to deal with the ANFIS inherent shortcomings to extract optimum fuzzy If-Then rules in noisy area arisen from application of nondimentional variables to estimate scouring depth. In the model, a PSO algorithm ...