Net (polyhedron)In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded (along edges) to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.
Karger's algorithmIn computer science and graph theory, Karger's algorithm is a randomized algorithm to compute a minimum cut of a connected graph. It was invented by David Karger and first published in 1993. The idea of the algorithm is based on the concept of contraction of an edge in an undirected graph . Informally speaking, the contraction of an edge merges the nodes and into one, reducing the total number of nodes of the graph by one. All other edges connecting either or are "reattached" to the merged node, effectively producing a multigraph.
K-minimum spanning treeThe k-minimum spanning tree problem, studied in theoretical computer science, asks for a tree of minimum cost that has exactly k vertices and forms a subgraph of a larger graph. It is also called the k-MST or edge-weighted k-cardinality tree. Finding this tree is NP-hard, but it can be approximated to within a constant approximation ratio in polynomial time. The input to the problem consists of an undirected graph with weights on its edges, and a number k.
Signature (topology)In the field of topology, the signature is an integer invariant which is defined for an oriented manifold M of dimension divisible by four. This invariant of a manifold has been studied in detail, starting with Rokhlin's theorem for 4-manifolds, and Hirzebruch signature theorem. Given a connected and oriented manifold M of dimension 4k, the cup product gives rise to a quadratic form Q on the 'middle' real cohomology group The basic identity for the cup product shows that with p = q = 2k the product is symmetric.
Reidemeister moveIn the mathematical area of knot theory, a Reidemeister move is any of three local moves on a link diagram. and, independently, , demonstrated that two knot diagrams belonging to the same knot, up to planar isotopy, can be related by a sequence of the three Reidemeister moves. Each move operates on a small region of the diagram and is one of three types: No other part of the diagram is involved in the picture of a move, and a planar isotopy may distort the picture.
Quotient groupA quotient group or factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure (the rest of the structure is "factored" out). For example, the cyclic group of addition modulo n can be obtained from the group of integers under addition by identifying elements that differ by a multiple of and defining a group structure that operates on each such class (known as a congruence class) as a single entity.
Darboux vectorIn differential geometry, especially the theory of space curves, the Darboux vector is the angular velocity vector of the Frenet frame of a space curve. It is named after Gaston Darboux who discovered it. It is also called angular momentum vector, because it is directly proportional to angular momentum. In terms of the Frenet-Serret apparatus, the Darboux vector ω can be expressed as and it has the following symmetrical properties: which can be derived from Equation (1) by means of the Frenet-Serret theorem (or vice versa).
Fundamental theorem of arithmeticIn mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example, The theorem says two things about this example: first, that 1200 be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.
Graded vector spaceIn mathematics, a graded vector space is a vector space that has the extra structure of a grading or gradation, which is a decomposition of the vector space into a direct sum of vector subspaces, generally indexed by the integers. For "pure" vector spaces, the concept has been introduced in homological algebra, and it is widely used for graded algebras, which are graded vector spaces with additional structures. Let be the set of non-negative integers.
Helmholtz equationIn mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation where ∇2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences.