Network performance refers to measures of service quality of a network as seen by the customer.
There are many different ways to measure the performance of a network, as each network is different in nature and design. Performance can also be modeled and simulated instead of measured; one example of this is using state transition diagrams to model queuing performance or to use a Network Simulator.
The following measures are often considered important:
Bandwidth commonly measured in bits/second is the maximum rate that information can be transferred
Throughput is the actual rate that information is transferred
Latency the delay between the sender and the receiver decoding it, this is mainly a function of the signals travel time, and processing time at any nodes the information traverses
Jitter variation in packet delay at the receiver of the information
Error rate the number of corrupted bits expressed as a percentage or fraction of the total sent
Bandwidth (computing)
The available channel bandwidth and achievable signal-to-noise ratio determine the maximum possible throughput. It is not generally possible to send more data than dictated by the Shannon-Hartley Theorem.
Throughput
Throughput is the number of messages successfully delivered per unit time. Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency. For discussions of this type, the terms 'throughput' and 'bandwidth' are often used interchangeably.
The Time Window is the period over which the throughput is measured. The choice of an appropriate time window will often dominate calculations of throughput, and whether latency is taken into account or not will determine whether the latency affects the throughput or not.
Latency (engineering)
The speed of light imposes a minimum propagation time on all electromagnetic signals.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Network delay is a design and performance characteristic of a telecommunications network. It specifies the latency for a bit of data to travel across the network from one communication endpoint to another. It is typically measured in multiples or fractions of a second. Delay may differ slightly, depending on the location of the specific pair of communicating endpoints.
End-to-end delay or one-way delay (OWD) refers to the time taken for a packet to be transmitted across a network from source to destination. It is a common term in IP network monitoring, and differs from round-trip time (RTT) in that only path in the one direction from source to destination is measured. The ping utility measures the RTT, that is, the time to go and come back to a host. Half the RTT is often used as an approximation of OWD but this assumes that the forward and back paths are the same in terms of congestion, number of hops, or quality of service (QoS).
Propagation delay is the time duration taken for a signal to reach its destination. It can relate to networking, electronics or physics. In computer networks, propagation delay is the amount of time it takes for the head of the signal to travel from the sender to the receiver. It can be computed as the ratio between the link length and the propagation speed over the specific medium. Propagation delay is equal to d / s where d is the distance and s is the wave propagation speed. In wireless communication, s=c, i.
This course offers an introduction to control systems using communication networks for interfacing sensors, actuators, controllers, and processes. Challenges due to network non-idealities and opportun
The students will learn about the basic principles of wireless communication systems, including transmission and modulation schemes as well as the basic components and algorithms of a wireless receive
In this seminar course students will get in depth understanding of mechanisms for private communication. This will be done by reading important papers that will be analyzed in the class. Students will
The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.
A local area network (LAN) is a computer network that interconnects computers within a limited area such as a residence, school, laboratory, university campus or office building. By contrast, a wide area network (WAN) not only covers a larger geographic distance, but also generally involves leased telecommunication circuits. Ethernet and Wi-Fi are the two most common technologies in use for local area networks. Historical network technologies include ARCNET, Token Ring and AppleTalk.
Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals. Digital electronic circuits are usually made from large assemblies of logic gates, often packaged in integrated circuits. Complex devices may have simple electronic representations of Boolean logic functions. The binary number system was refined by Gottfried Wilhelm Leibniz (published in 1705) and he also established that by using the binary system, the principles of arithmetic and logic could be joined.
Delves into light-induced phase transitions in quantum materials, comparing them to equilibrium transitions and exploring the potential for realizing novel phases.
Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
EPFL2024
,
Rapid single-flux quantum (RSFQ) is one of the most advanced and promising superconducting logic families, offering exceptional energy efficiency and speed. RSFQ technology requires delay registers (DFFs) and splitter cells to satisfy the path-balancing an ...
The occurrence of manufacturing defects in wind turbine blade (WTB) production can result in significant increases in operation and maintenance costs of WTBs, reduce capacity factors of wind farms, and occasionally lead to severe and disastrous consequence ...