Category

Topics in topology

Related concepts (16)
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.
Topological manifold
In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure).
Local homeomorphism
In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local (though not necessarily global) structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.
Invariance of domain
Invariance of domain is a theorem in topology about homeomorphic subsets of Euclidean space . It states: If is an open subset of and is an injective continuous map, then is open in and is a homeomorphism between and . The theorem and its proof are due to L. E. J. Brouwer, published in 1912. The proof uses tools of algebraic topology, notably the Brouwer fixed point theorem. The conclusion of the theorem can equivalently be formulated as: " is an open map".
Open and closed maps
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa. Open and closed maps are not necessarily continuous.
Differentiable manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
Initial topology
In general topology and related areas of mathematics, the initial topology (or induced topology or weak topology or limit topology or projective topology) on a set with respect to a family of functions on is the coarsest topology on that makes those functions continuous. The subspace topology and product topology constructions are both special cases of initial topologies. Indeed, the initial topology construction can be viewed as a generalization of these.
Pasting lemma
In topology, the pasting or gluing lemma, and sometimes the gluing rule, is an important result which says that two continuous functions can be "glued together" to create another continuous function. The lemma is implicit in the use of piecewise functions. For example, in the book Topology and Groupoids, where the condition given for the statement below is that and The pasting lemma is crucial to the construction of the fundamental group or fundamental groupoid of a topological space; it allows one to concatenate continuous paths to create a new continuous path.
Join (topology)
In topology, a field of mathematics, the join of two topological spaces and , often denoted by or , is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in to every point in . The join of a space with itself is denoted by . The join is defined in slightly different ways in different contexts If and are subsets of the Euclidean space , then:,that is, the set of all line-segments between a point in and a point in .
Connectedness
In mathematics, connectedness is used to refer to various properties meaning, in some sense, "all one piece". When a mathematical object has such a property, we say it is connected; otherwise it is disconnected. When a disconnected object can be split naturally into connected pieces, each piece is usually called a component (or connected component). Connected space A topological space is said to be connected if it is not the union of two disjoint nonempty open sets.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.