Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Variété topologiqueEn topologie, une variété topologique est un espace topologique, éventuellement séparé, assimilable localement à un espace euclidien. Les variétés topologiques constituent une classe importante des espaces topologiques, avec des applications à tous les domaines des mathématiques. Le terme variété peut désigner une variété topologique, ou, le plus souvent, une variété topologique munie d'une autre structure. Par exemple, une variété différentielle est une variété topologique munie d'une structure permettant le calcul différentiel.
Local homeomorphismIn mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local (though not necessarily global) structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.
Théorème de l'invariance du domaineEn mathématiques, et plus précisément en topologie, le théorème de l'invariance du domaine est un résultat dû à L. E. J. Brouwer (1912), concernant les applications continues entre sous-ensembles de Rn. La forme la plus fréquente de ce théorème est : Soit U un sous-ensemble ouvert de Rn et f : U → Rn une injection continue, alors V = f(U) est ouvert et f est un homéomorphisme entre U et V.
Applications ouvertes et ferméesEn mathématiques, et plus précisément en topologie, une application ouverte est une application entre deux espaces topologiques envoyant les ouverts de l'un vers des ouverts de l'autre. De même, une application fermée envoie les fermés du premier espace vers des fermés du second. Soit deux espaces topologiques X et Y ; on dit qu'une application f de X vers Y est ouverte si pour tout ouvert U de X, l' f(U) est ouverte dans Y ; de même, on dit que f est fermée si pour tout fermé U de X, l'image f(U) est fermée dans Y.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
ConnectivitéLa connectivité désigne ce qu'une entité offre comme à d'autres entités de son environnement. Elle se rapporte plus généralement à la théorie des graphes. En écologie, la connectivité écologique désigne le degré de non-fragmentation écologique des milieux et paysages. La connectivité est parfois utilisée pour désigner les connecteurs offerts par un dispositif physique, par exemple, pour un appareil électrique. En géométrie, la connectivité peut aussi désigner le voisinage d'une entité dans un pavage.
Topologie compacte-ouverteEn mathématiques, la topologie compacte-ouverte est une topologie définie sur l'ensemble des applications continues entre deux espaces topologiques. C'est l'une des topologies les plus utilisées sur un tel espace fonctionnel, et elle est employée en théorie de l'homotopie et en analyse fonctionnelle. Elle a été introduite par Ralph Fox en 1945. Soient X et Y deux espaces topologiques et C(X,Y) l'espace des applications continues de X dans Y.
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.