A vestibular schwannoma (VS), also called acoustic neuroma, is a benign tumor that develops on the vestibulocochlear nerve that passes from the inner ear to the brain. The tumor originates when Schwann cells that form the insulating myelin sheath on the nerve malfunction. Normally, Schwann cells function beneficially to protect the nerves which transmit balance and sound information to the brain. However, sometimes a mutation in the tumor suppressor gene, NF2, located on chromosome 22, results in abnormal production of the cell protein named Merlin, and Schwann cells multiply to form a tumor. The tumor originates mostly on the vestibular division of the nerve rather than the cochlear division, but hearing as well as balance will be affected as the tumor enlarges.
The great majority of these VSs (95%) are unilateral, in one ear only. They are called "sporadic" (i.e., by-chance, non-hereditary). Although non-cancerous, they can do harm or even become life-threatening if they grow to press on other cranial nerves and vital structures such as the brainstem. Variations in the mutation determine the nature of the tumor's development. The only environmental exposure that has been definitely associated with the growth of a VS is therapeutic radiation exposure to the head.
Sporadic VSs originate within the confining bony walls of the small (ca. 2 cm long) internal auditory canal. The most common early symptoms of these intracanalicular (IAC) VSs are gradual hearing loss and a feeling of fullness in the affected ear, some imbalance or dizziness, and tinnitus (ringing or other noise in the ear). Gradual single-sided hearing loss in the high frequencies is the first most obvious symptom for the great majority of patients. Headache as a presenting symptom of VS specifically is rare; facial symptoms (facial numbness, weakness) usually occur only as the tumor grows out of the canal and/or after therapeutic treatment. Delayed diagnosis and misdiagnosis are not unusual.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
Covers force plate applications in biomechanics, joint forces, posturography, and jump height calculations.
Explores auditory and vestibular prostheses, covering cochlear implants, vestibular functions, encoding techniques, and clinical applications.
Delves into cybersickness in VR, discussing the conflict between the vestibular system and visual movement triggers.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy
Neuroengineering is at the frontier between neuroscience and engineering: understanding how the brain works allows developing engineering applications and therapies of high impact, while the design of
Meningioma, also known as meningeal tumor, is typically a slow-growing tumor that forms from the meninges, the membranous layers surrounding the brain and spinal cord. Symptoms depend on the location and occur as a result of the tumor pressing on nearby tissue. Many cases never produce symptoms. Occasionally seizures, dementia, trouble talking, vision problems, one sided weakness, or loss of bladder control may occur. Risk factors include exposure to ionizing radiation such as during radiation therapy, a family history of the condition, and neurofibromatosis type 2.
Neurofibromatosis type II (also known as MISME syndrome – multiple inherited schwannomas, meningiomas, and ependymomas) is a genetic condition that may be inherited or may arise spontaneously, and causes benign tumors of the brain, spinal cord, and peripheral nerves. The types of tumors frequently associated with NF2 include vestibular schwannomas, meningiomas, and ependymomas. The main manifestation of the condition is the development of bilateral benign brain tumors in the nerve sheath of the cranial nerve VIII, which is the "auditory-vestibular nerve" that transmits sensory information from the inner ear to the brain.
Radiosurgery is surgery using radiation, that is, the destruction of precisely selected areas of tissue using ionizing radiation rather than excision with a blade. Like other forms of radiation therapy (also called radiotherapy), it is usually used to treat cancer. Radiosurgery was originally defined by the Swedish neurosurgeon Lars Leksell as "a single high dose fraction of radiation, stereotactically directed to an intracranial region of interest".
ObjectiveProton beam therapy is considered, by some authors, as having the advantage of delivering dose distributions more conformal to target compared with stereotactic radiosurgery (SRS). Here, we performed a systematic review and meta-analysis of proton ...
BACKGROUND: Stereotactic radiosurgery (SRS) is one of the main treatment options in the management of small to medium size vestibular schwannomas (VSs), because of high tumor control rate and low cranial nerves morbidity. Series reporting long-term hearing ...
LIPPINCOTT WILLIAMS & WILKINS2023
PurposeTo perform a systematic review of literature specific to single-fraction stereotactic radiosurgery (SRS) for large vestibular schwannomas (VS), maximum diameter >= 2.5 cm and/or classified as Koos Grade IV, and to present consensus recommendations o ...