Concept

Complete theory

In mathematical logic, a theory is complete if it is consistent and for every closed formula in the theory's language, either that formula or its negation is provable. That is, for every sentence the theory contains the sentence or its negation but not both (that is, either or ). Recursively axiomatizable first-order theories that are consistent and rich enough to allow general mathematical reasoning to be formulated cannot be complete, as demonstrated by Gödel's first incompleteness theorem. This sense of complete is distinct from the notion of a complete logic, which asserts that for every theory that can be formulated in the logic, all semantically valid statements are provable theorems (for an appropriate sense of "semantically valid"). Gödel's completeness theorem is about this latter kind of completeness. Complete theories are closed under a number of conditions internally modelling the T-schema: For a set of formulas : if and only if and , For a set of formulas : if and only if or . Maximal consistent sets are a fundamental tool in the model theory of classical logic and modal logic. Their existence in a given case is usually a straightforward consequence of Zorn's lemma, based on the idea that a contradiction involves use of only finitely many premises. In the case of modal logics, the collection of maximal consistent sets extending a theory T (closed under the necessitation rule) can be given the structure of a model of T, called the canonical model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.