Related concepts (16)
Closed manifold
In mathematics, a closed manifold is a manifold without boundary that is compact. In comparison, an open manifold is a manifold without boundary that has only non-compact components. The only connected one-dimensional example is a circle. The sphere, torus, and the Klein bottle are all closed two-dimensional manifolds. The real projective space RPn is a closed n-dimensional manifold. The complex projective space CPn is a closed 2n-dimensional manifold. A line is not closed because it is not compact.
Covering space
A covering of a topological space is a continuous map with special properties. Let be a topological space. A covering of is a continuous map such that there exists a discrete space and for every an open neighborhood , such that and is a homeomorphism for every . Often, the notion of a covering is used for the covering space as well as for the map . The open sets are called sheets, which are uniquely determined up to a homeomorphism if is connected. For each the discrete subset is called the fiber of .
Tautological bundle
In mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle. The tautological bundle is also called the universal bundle since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a classifying space for vector bundles.
Real projective plane
In mathematics, the real projective plane is an example of a compact non-orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has basic applications to geometry, since the common construction of the real projective plane is as the space of lines in \mathbb{R}^3 passing through the origin.
Topological manifold
In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure).
Topological group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups have been studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a very wide class of topological groups.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.