Summary
In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function. A transcendental entire function is an entire function that is not a polynomial. Just as meromorphic functions can be viewed as a generalization of rational fractions, entire functions can be viewed as a generalization of polynomials. In particular, if for meromorphic functions one can generalize the factorization into simple fractions (the Mittag-Leffler theorem on the decomposition of a meromorphic function), then for entire functions there is a generalization of the factorization — the Weierstrass theorem on entire functions. Every entire function can be represented as a single power series that converges everywhere in the complex plane, hence uniformly on compact sets. The radius of convergence is infinite, which implies that or Any power series satisfying this criterion will represent an entire function. If (and only if) the coefficients of the power series are all real then the function evidently takes real values for real arguments, and the value of the function at the complex conjugate of will be the complex conjugate of the value at Such functions are sometimes called self-conjugate (the conjugate function, being given by ). If the real part of an entire function is known in a neighborhood of a point then both the real and imaginary parts are known for the whole complex plane, up to an imaginary constant.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.