**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Entire function

Summary

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic on the whole complex plane. Typical examples of entire functions are polynomials and the exponential function, and any finite sums, products and compositions of these, such as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as well as derivatives and integrals of entire functions such as the error function. If an entire function has a
root at , then , taking the limit value at , is an entire function. On the other hand, the natural logarithm, the reciprocal function, and the square root are all not entire functions, nor can they be continued analytically to an entire function.
A transcendental entire function is an entire function that is not a polynomial.
Just as meromorphic functions can be viewed as a generalization of rational fractions, entire functions can be viewed as a generalization of polynomials. In particular, if for meromorphic functions one can generalize the factorization into simple fractions (the Mittag-Leffler theorem on the decomposition of a meromorphic function), then for entire functions there is a generalization of the factorization — the Weierstrass theorem on entire functions.
Every entire function can be represented as a single power series
that converges everywhere in the complex plane, hence uniformly on compact sets. The radius of convergence is infinite, which implies that
or
Any power series satisfying this criterion will represent an entire function.
If (and only if) the coefficients of the power series are all real then the function evidently takes real values for real arguments, and the value of the function at the complex conjugate of will be the complex conjugate of the value at Such functions are sometimes called self-conjugate (the conjugate function, being given by ).
If the real part of an entire function is known in a neighborhood of a point then both the real and imaginary parts are known for the whole complex plane, up to an imaginary constant.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (36)

Related people (3)

Related concepts (25)

Related courses (16)

Related MOOCs (9)

Related lectures (77)

Taylor series

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century.

Gamma function

In mathematics, the gamma function (represented by Γ, the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n, Derived by Daniel Bernoulli, for complex numbers with a positive real part, the gamma function is defined via a convergent improper integral: The gamma function then is defined as the analytic continuation of this integral function to a meromorphic function that is holomorphic in the whole complex plane except zero and the negative integers, where the function has simple poles.

Holomorphic function

In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space Cn. The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (analytic). Holomorphic functions are the central objects of study in complex analysis.

Apprendre les bases de l'analyse vectorielle et de l'analyse complexe.

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

Analyse I

Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond

Analyse I (partie 1) : Prélude, notions de base, les nombres réels

Concepts de base de l'analyse réelle et introduction aux nombres réels.

Analyse I (partie 2) : Introduction aux nombres complexes

Introduction aux nombres complexes

Mild Dissipative Surface Dynamics

Explores mild dissipative surface dynamics, including conservative behavior and ergodic functions.

Analytic Continuation and Uniqueness of Holomorphic Functions

Covers the concept of analytic continuation and the uniqueness of holomorphic functions, including the extension of holomorphic functions and the properties of entire and meromorphic functions.

Shell Components in Meromorphic Parameter Spaces

Explores shell components in transcendental parameter planes and attracting cycles.

Giovanni De Cesare, Stéphanie Joëlle André, Alexandre Philippe Louis Antoine Fourrier

Most lacustrine deltas are nowadays highly anthropized systems. River training works during past centuries considered rivers mainly as vectors of water and sediments from a point source to a sink. However, numerous problems have been identified by resident ...

2024,

We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain Omega of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Omega call ...

, ,

Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve a ...