Résumé
En analyse complexe, une fonction entière est une fonction holomorphe définie sur tout le plan complexe. C'est le cas notamment de la fonction exponentielle complexe, des fonctions polynomiales et de leurs combinaisons par composition, somme et produit, telles que sinus, cosinus et les fonctions hyperboliques. Le quotient de deux fonctions entières est une fonction méromorphe. Considérée comme un cas particulier de la théorie des fonctions analytiques, la théorie élémentaire des fonctions entières ne fait que tirer les conséquences de la théorie générale. C'est celle que l'on voit essentiellement dans un premier cours sur la théorie des fonctions complexes (souvent enrichi du théorème de factorisation de Weierstrass). Mais l'étude, commencée depuis le milieu du , par Cauchy, Laguerre, Weierstrass... s'est considérablement enrichie sous l'impulsion de Borel, Hadamard, Montel, Picard, Valiron, Blumenthal... (sans oublier Nevanlinna) et constitue maintenant une imposante théorie. La théorie des fonctions entières se fixe comme buts de classifier les fonctions entières selon leurs croissances, de préciser le lien entre les coefficients de Taylor de la fonction et la croissance, le lien entre les zéros éventuels et le comportement de la fonction, et les relations entre la fonction et ses dérivées sur ces questions. Ces aspects de la théorie des fonctions entières ont été étendus aux fonctions méromorphes. L'ensemble des fonctions entières forme un anneau intègre qui est de Bézout, mais qui n'est pas atomique (et donc non factoriel et non noethérien). On classe habituellement les fonctions analytiques complexes selon leur complexité, et cette complexité est celle de leurs singularités. Hormis les fonctions polynomiales, apparaissent ainsi les fonctions entières qui sont l'objet de cet article, les fonctions méromorphes qui sont des quotients de fonctions entières et dont les seules singularités sont polaires, les fonctions présentant des singularités essentielles ou des points de branchement formant ainsi les fonctions les plus compliquées parmi les fonctions analytiques d'une seule variable complexe.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.