A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data. On a spectrogram, a sferic appears as a vertical stripe (reflecting its broadband and impulsive nature) that may extend from a few kHz to several tens of kHz, depending on atmospheric conditions.
Sferics received from about 2,000 kilometres' distance or greater have their frequencies slightly offset in time, producing tweeks.
When the electromagnetic energy from a sferic escapes the Earth-ionosphere waveguide and enters the magnetosphere, it becomes dispersed by the near-Earth plasma, forming a whistler signal. Because the source of the whistler is an impulse (i.e., the sferic), a whistler may be interpreted as the impulse response of the magnetosphere (for the conditions at that particular instant).
A lightning channel with all its branches and its electric currents behaves like a huge antenna system from which electromagnetic waves of all frequencies are radiated. Beyond a distance where luminosity is visible and thunder can be heard (typically about 10 km), these electromagnetic impulses are the only sources of direct information about thunderstorm activity on the ground. Transients electric currents during return strokes (R strokes) or intracloud strokes (K strokes) are the main sources for the generation of impulse-type electromagnetic radiation known as sferics (sometimes called atmospherics). While this impulsive radiation dominates at frequencies less than about 100 kHz, (loosely called long waves), a continuous noise component becomes increasingly important at higher frequencies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Earth–ionosphere waveguide refers to the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide. Extremely low frequency (ELF) (< 3 kHz) and very low frequency (VLF) (3–30 kHz) signals can propagate efficiently in this waveguide.
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
A whistler is a very low frequency (VLF) electromagnetic (radio) wave generated by lightning. Frequencies of terrestrial whistlers are 1 kHz to 30 kHz, with maximum frequencies usually at 3 kHz to 5 kHz. Although they are electromagnetic waves, they occur at audio frequencies, and can be converted to audio using a suitable receiver. They are produced by lightning strikes (mostly intracloud and return-path) where the impulse travels along the Earth's magnetic field lines from one hemisphere to the other.
A current propagation type return stroke model which is consistent with the estimated distribution of the charge on the leader channel is described. The model takes into account the dispersion of the return stroke current along the return stroke channel. T ...
In a recent paper, a procedure to reconstruct the attenuation function of a return-stroke current from the simultaneous measurements of the channel-base current and the radiated electromagnetic fields was presented. One of the assumptions of the whole fram ...
In the present paper, we show, by means of numerical simulations, that electromagnetic field data obtained from the radiation of a return-stroke lightning discharge and measured over a short-duration time-window can be exploited to reconstruct the attenuat ...