Concept

Radio atmospheric signal

Summary
A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges. Sferics may propagate from their lightning source without major attenuation in the Earth–ionosphere waveguide, and can be received thousands of kilometres from their source. On a time-domain plot, a sferic may appear as a single high-amplitude spike in the time-domain data. On a spectrogram, a sferic appears as a vertical stripe (reflecting its broadband and impulsive nature) that may extend from a few kHz to several tens of kHz, depending on atmospheric conditions. Sferics received from about 2,000 kilometres' distance or greater have their frequencies slightly offset in time, producing tweeks. When the electromagnetic energy from a sferic escapes the Earth-ionosphere waveguide and enters the magnetosphere, it becomes dispersed by the near-Earth plasma, forming a whistler signal. Because the source of the whistler is an impulse (i.e., the sferic), a whistler may be interpreted as the impulse response of the magnetosphere (for the conditions at that particular instant). A lightning channel with all its branches and its electric currents behaves like a huge antenna system from which electromagnetic waves of all frequencies are radiated. Beyond a distance where luminosity is visible and thunder can be heard (typically about 10 km), these electromagnetic impulses are the only sources of direct information about thunderstorm activity on the ground. Transients electric currents during return strokes (R strokes) or intracloud strokes (K strokes) are the main sources for the generation of impulse-type electromagnetic radiation known as sferics (sometimes called atmospherics). While this impulsive radiation dominates at frequencies less than about 100 kHz, (loosely called long waves), a continuous noise component becomes increasingly important at higher frequencies.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.