Summary
A foreshock is an earthquake that occurs before a larger seismic event (the mainshock) and is related to it in both time and space. The designation of an earthquake as foreshock, mainshock or aftershock is only possible after the full sequence of events has happened. Foreshock activity has been detected for about 40% of all moderate to large earthquakes, and about 70% for events of M>7.0. They occur from a matter of minutes to days or even longer before the main shock; for example, the 2002 Sumatra earthquake is regarded as a foreshock of the 2004 Indian Ocean earthquake with a delay of more than two years between the two events. Some great earthquakes (M>8.0) show no foreshock activity at all, such as the M8.6 1950 India–China earthquake. The increase in foreshock activity is difficult to quantify for individual earthquakes but becomes apparent when combining the results of many different events. From such combined observations, the increase before the mainshock is observed to be of inverse power law type. This may either indicate that foreshocks cause stress changes resulting in the mainshock or that the increase is related to a general increase in stress in the region. The observation of foreshocks associated with many earthquakes suggests that they are part of a preparation process prior to nucleation. In one model of earthquake rupture, the process forms as a cascade, starting with a very small event that triggers a larger one, continuing until the main shock rupture is triggered. However, analysis of some foreshocks has shown that they tend to relieve stress around the fault. In this view, foreshocks and aftershocks are part of the same process. This is supported by an observed relationship between the rate of foreshocks and the rate of aftershocks for an event. In practice, there are two main conflicting theories about foreshocks: earthquake triggering process (described in SOC models and ETAS-like models) and the loading process by aseismic slip (nucleation models).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (1)
ME-801: Mechanics of earthquakes and aseismic slip
Fundamentals of fracture and friction. Numerical methods for models of earthquakes and aseismic slip. Geophysical observations/measurements. Aseismic slip and slow slip events: models and observations
Related concepts (3)
Aftershock
In seismology, an aftershock is a smaller earthquake that follows a larger earthquake, in the same area of the main shock, caused as the displaced crust adjusts to the effects of the main shock. Large earthquakes can have hundreds to thousands of instrumentally detectable aftershocks, which steadily decrease in magnitude and frequency according to a consistent pattern. In some earthquakes the main rupture happens in two or more steps, resulting in multiple main shocks.
Earthquake prediction
Earthquake prediction is a branch of the science of seismology concerned with the specification of the time, location, and magnitude of future earthquakes within stated limits, and particularly "the determination of parameters for the next strong earthquake to occur in a region". Earthquake prediction is sometimes distinguished from earthquake forecasting, which can be defined as the probabilistic assessment of general earthquake hazard, including the frequency and magnitude of damaging earthquakes in a given area over years or decades.
Earthquake
An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, from those that are so weak that they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time.