In mathematics, an ordered basis of a vector space of finite dimension n allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of n scalars called coordinates. If two different bases are considered, the coordinate vector that represents a vector v on one basis is, in general, different from the coordinate vector that represents v on the other basis. A change of basis consists of converting every assertion expressed in terms of coordinates relative to one basis into an assertion expressed in terms of coordinates relative to the other basis.
Such a conversion results from the change-of-basis formula which expresses the coordinates relative to one basis in terms of coordinates relative to the other basis. Using matrices, this formula can be written
where "old" and "new" refer respectively to the firstly defined basis and the other basis, and are the column vectors of the coordinates of the same vector on the two bases, and is the change-of-basis matrix (also called transition matrix), which is the matrix whose columns are the coordinate vectors of the new basis vectors on the old basis.
This article deals mainly with finite-dimensional vector spaces. However, many of the principles are also valid for infinite-dimensional vector spaces.
Let be a basis of a finite-dimensional vector space V over a field F.
For j = 1, ..., n, one can define a vector w_j by its coordinates over
Let
be the matrix whose jth column is formed by the coordinates of w_j. (Here and in what follows, the index i refers always to the rows of A and the while the index j refers always to the columns of A and the such a convention is useful for avoiding errors in explicit computations.)
Setting one has that is a basis of V if and only if the matrix A is invertible, or equivalently if it has a nonzero determinant.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
In linear algebra, an eigenvector (ˈaɪgənˌvɛktər) or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor. Geometrically, a transformation matrix rotates, stretches, or shears the vectors it acts upon. The eigenvectors for a linear transformation matrix are the set of vectors that are only stretched, with no rotation or shear.
In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping. For a fixed positive real number a, the mapping is the squeeze mapping with parameter a. Since is a hyperbola, if u = ax and v = y/a, then uv = xy and the points of the image of the squeeze mapping are on the same hyperbola as (x,y) is.
We characterize the photochemically relevant conical intersections between the lowest-lying accessible electronic excited states of the different DNA/RNA nucleobases using Cholesky decomposition-based complete active space self-consistent field (CASSCF) al ...
Washington2023
,
This work presents the influence of splitters on the performance of small-scale turbopumps for organic Rankine cycle applications numerically. Different design parameters, such as impeller diameter at the outlet, number of blades, blade angle at the traili ...
2023
The organic Rankine cycle (ORC) system is among the technologies applied to exploit waste heat in vehicles. Since common organic fluids have lower latent heat than water, higher mass flow rates are required to convert the same waste heat, considerably incr ...