In chemistry, a dangling bond is an unsatisfied valence on an immobilized atom. An atom with a dangling bond is also referred to as an immobilized free radical or an immobilized radical, a reference to its structural and chemical similarity to a free radical.
When speaking of a dangling bond, one is generally referring to the state described above, containing one electron and thus leading to a neutrally charged atom. There are also dangling bond defects containing two or no electrons. These are negatively and positively charged respectively. Dangling bonds with two electrons have an energy close to the valence band of the material and those with none have an energy that is closer to the conduction band.
In order to gain enough electrons to fill their valence shells (see also octet rule), many atoms will form covalent bonds with other atoms. In the simplest case, that of a single bond, two atoms each contribute one unpaired electron, and the resulting pair of electrons is shared between them. Atoms that possess too few bonding partners to satisfy their valences and that possess unpaired electrons are termed "free radicals"; so, often, are molecules containing such atoms. When a free radical exists in an immobilized environment (for example, a solid), it is referred to as an "immobilized free radical" or a "dangling bond".
A dangling bond in (bulk) crystalline silicon is often pictured as a single unbound hybrid sp3 orbital on the silicon atom, with the other three sp3 orbitals facing away from the unbound orbital. In reality, the dangling bond unbound orbital is better described by having more than half of the dangling bond wave function localized on the silicon nucleus, with delocalized electron density around the three bonding orbitals, comparable to a p-orbital with more electron density localized on the silicon nucleus. The three remaining bonds tend to shift to a more planar configuration.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source. FETs are also known as unipolar transistors since they involve single-carrier-type operation.
A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum (typically liberated by thermionic emission) or as free electrons and ions through an ionized gas.
A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal.
Explores transport, recombination, dark conductivity, and photoconductivity in electronic materials, emphasizing the significance of recombination mechanisms in semiconductors.
This research presents a comprehensive comparative analysis of the passivation kinetics of OFP-Cu and OF-Cu in simulated repository electrolyte. The study employs a range of techniques, including potentiodynamic polarization, multi-step potentiostatic pola ...
Two-dimensional (2D) materials such as graphene and transition metal dichalcogenide (TMDC) are considered as one of the most promising material platforms for future electronic devices, due to their ultra-thin thickness and fascinating electrical and optica ...
Thermal healing of focused ion beam-implanted defects in GaN is investigated by off-axis electron holography in TEM. The data reveal that healing starts at temperatures as low as about 250 degrees C. The healing processes result in an irreversible transiti ...