Summary
A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum (typically liberated by thermionic emission) or as free electrons and ions through an ionized gas. Semiconductor devices are manufactured both as single discrete devices and as integrated circuit (IC) chips, which consist of two or more devices—which can number from the hundreds to the billions—manufactured and interconnected on a single semiconductor wafer (also called a substrate). Semiconductor materials are useful because their behavior can be easily manipulated by the deliberate addition of impurities, known as doping. Semiconductor conductivity can be controlled by the introduction of an electric or magnetic field, by exposure to light or heat, or by the mechanical deformation of a doped monocrystalline silicon grid; thus, semiconductors can make excellent sensors. Current conduction in a semiconductor occurs due to mobile or "free" electrons and electron holes, collectively known as charge carriers. Doping a semiconductor with a small proportion of an atomic impurity, such as phosphorus or boron, greatly increases the number of free electrons or holes within the semiconductor. When a doped semiconductor contains excess holes, it is called a p-type semiconductor (p for positive electric charge); when it contains excess free electrons, it is called an n-type semiconductor (n for a negative electric charge). A majority of mobile charge carriers have negative charges. The manufacture of semiconductors controls precisely the location and concentration of p- and n-type dopants. The connection of n-type and p-type semiconductors form p–n junctions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
EE-557: Semiconductor devices I
This course aims to give a solid introduction to semiconductors, from Silicon to compound semiconductors, making the connection between the physics and their application in real life. We will explore
PHYS-433: Semiconductor physics and light-matter interaction
Lectures on the fundamental aspects of semiconductor physics and the main properties of the p-n junction that is at the heart of devices like LEDs & laser diodes. The last part deals with light-matter
EE-333: Micro and nanoelectronic devices
Ce cours est une introduction aux principes physiques des composants à semiconducteurs (transistors bipolaires, MOSFET et autres) et à leur modèlisation. Les performances électriques (digitales et ana
Show more