A transistor is a semiconductor device with at least three terminals for connection to an electric circuit. In the common case, the third terminal controls the flow of current between the other two terminals. This can be used for amplification, as in the case of a radio receiver, or for rapid switching, as in the case of digital circuits. The transistor replaced the vacuum-tube triode, also called a (thermionic) valve, which was much larger in size and used significantly more power to operate.The first transistor was successfully demonstrated on December 23, 1947, at Bell Laboratories in Murray Hill, New Jersey. Bell Labs was the research arm of American Telephone and Telegraph (AT&T). The three individuals credited with the invention of the transistor were William Shockley, John Bardeen and Walter Brattain. The introduction of the transistor is often considered one of the most important inventions in history.
Transistors are broadly classified into two categories: bipolar junction transistor (BJT) and field-effect transistor (FET).
The principle of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925. John Bardeen, Walter Brattain and William Shockley invented the first working transistors at Bell Labs, the point-contact transistor in 1947. Shockley introduced the improved bipolar junction transistor in 1948, which entered production in the early 1950s and led to the first widespread use of transistors.
The MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, was invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959. MOSFETs use even less power, which led to the mass-production of MOS transistors for a wide range of uses. The MOSFET has since become the most widely manufactured device in history.
The first patent for the field-effect transistor principle was filed in Canada by Austrian-Hungarian physicist Julius Edgar Lilienfeld on October 22, 1925, but Lilienfeld published no research articles about his devices, and his work was ignored by industry.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. FETs (JFETs or MOSFETs) are devices with three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source. FETs are also known as unipolar transistors since they involve single-carrier-type operation.
The electronics industry is the economic sector that produces electronic devices. It emerged in the 20th century and is today one of the largest global industries. Contemporary society uses a vast array of electronic devices built-in automated or semi-automated factories operated by the industry. Products are primarily assembled from metal–oxide–semiconductor (MOS) transistors and integrated circuits, the latter principally by photolithography and often on printed circuit boards.
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwell's equations. Various common phenomena are related to electricity, including lightning, static electricity, electric heating, electric discharges and many others. The presence of either a positive or negative electric charge produces an electric field.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
The engineering of tin halide perovskites has led to the development of p-type transistors with field-effect mobilities of over 70 cm2 V-1 s-1. However, due to their background hole doping, these perovskites are not suitable for n-type transistors. Ambipol ...
Nature Portfolio2024
In the past decades, a significant increase of the transistor density on a chip has led to exponential growth in computational power driven by Moore's law. To overcome the bottleneck of traditional von-Neumann architecture in computational efficiency, effo ...
The versatility of half-bridge configuration of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistor (MOSFET) power module contributes to its widespread adoption, highlighting the popularity and significance of its corresponding dual gat ...