Graphite (ˈɡræfaɪt) is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on large scale (300 kton/year, in 1989) for uses in pencils, lubricants, and electrodes. Under high pressures and temperatures it converts to diamond. It is a good (but not excellent) conductor of both heat and electricity.
The principal types of natural graphite, each occurring in different types of ore deposits, are
Crystalline small flakes of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular;
Amorphous graphite: very fine flake graphite is sometimes called amorphous;
Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fibrous or acicular crystalline aggregates, and is probably hydrothermal in origin.
Highly ordered pyrolytic graphite refers to graphite with an angular spread between the graphite sheets of less than 1°.
The name "graphite fiber" is sometimes used to refer to carbon fibers or carbon fiber-reinforced polymer.
Synthetic graphite is a material consisting of graphitic carbon which has been obtained by graphitizing of non-graphitic carbon, by CVD from hydrocarbons at temperatures above 2500 K, by decomposition of thermally unstable carbides or by crystallizing from metal melts supersaturated with carbon.
Graphite occurs in metamorphic rocks as a result of the reduction of sedimentary carbon compounds during metamorphism. It also occurs in igneous rocks and in meteorites. Minerals associated with graphite include quartz, calcite, micas and tourmaline. The principal export sources of mined graphite are in order of tonnage: China, Mexico, Canada, Brazil, and Madagascar.
In meteorites, graphite occurs with troilite and silicate minerals. Small graphitic crystals in meteoritic iron are called cliftonite.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours est une introduction au comportement mécanique, à l'élaboration, à la structure et au cycle de vie des grandes classes de matériaux de structure (métaux, polymères, céramiques et composites)
Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, lead, and flerovium are below it. It is relatively unreactive. Because of its high chemical affinity for oxygen, it was not until 1823 that Jöns Jakob Berzelius was first able to prepare it and characterize it in pure form.
Lead is a chemical element with the symbol Pb (from the Latin plumbum) and atomic number 82. It is a heavy metal that is denser than most common materials. Lead is soft and malleable, and also has a relatively low melting point. When freshly cut, lead is a shiny gray with a hint of blue. It tarnishes to a dull gray color when exposed to air. Lead has the highest atomic number of any stable element and three of its isotopes are endpoints of major nuclear decay chains of heavier elements.
Steel is an alloy of iron and carbon with improved strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels, which are resistant to corrosion and oxidation, typically need an additional 11% chromium. Because of its high tensile strength and low cost, steel is used in buildings, infrastructure, tools, ships, trains, cars, bicycles, machines, electrical appliances, furniture, and weapons. Iron is the base metal of steel.
A common method for creating compliant electrodes for dielectric elastomer actuators (DEAs) and soft sensors is to incorporate electrically conductive carbon particles into a polymer matrix. However, using unidirectional aligned carbon fibers instead not o ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024
Controlled atomic patterning is an attractive tool to fine tune properties of graphitic lattice. Several O-functionalized derivatives of graphitic lattice have been widely studied, e.g., graphene oxide, reduced graphene oxide, and functionalized carbon nan ...
Biominerals are used by natural organisms for example as structural supports and optical sensors. They are produced from a limited number of elements and under ambient conditions. Nevertheless, they often possess excellent mechanical properties and sometim ...