Summary
Gelatin or gelatine (from gelatus 'stiff' or 'frozen') is a translucent, colorless, flavorless food ingredient, commonly derived from collagen taken from animal body parts. It is brittle when dry and rubbery when moist. It may also be referred to as hydrolyzed collagen, collagen hydrolysate, gelatine hydrolysate, hydrolyzed gelatine, and collagen peptides after it has undergone hydrolysis. It is commonly used as a gelling agent in food, beverages, medications, drug or vitamin capsules, photographic films, papers, and cosmetics. Substances containing gelatin or functioning in a similar way are called gelatinous substances. Gelatin is an irreversibly hydrolyzed form of collagen, wherein the hydrolysis reduces protein fibrils into smaller peptides; depending on the physical and chemical methods of denaturation, the molecular weight of the peptides falls within a broad range. Gelatin is present in gelatin desserts, most gummy candy and marshmallows, ice creams, dips, and yogurts. Gelatin for cooking comes as powder, granules, and sheets. Instant types can be added to the food as they are; others must soak in water beforehand. Gelatin is a collection of peptides and proteins produced by partial hydrolysis of collagen extracted from the skin, bones, and connective tissues of animals such as domesticated cattle, chicken, pigs, and fish. During hydrolysis, some of the bonds between and within component proteins are broken. Its chemical composition is, in many aspects, closely similar to that of its parent collagen. Photographic and pharmaceutical grades of gelatin generally are sourced from cattle bones and pig skin. Gelatin is classified as a hydrogel. Gelatin is nearly tasteless and odorless with a colorless or slightly yellow appearance. It is transparent and brittle, and it can come as sheets, flakes, or as a powder. Polar solvents like hot water, glycerol, and acetic acid can dissolve gelatin, but it is insoluble in organic solvents like alcohol. Gelatin absorbs 5–10 times its weight in water to form a gel.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (11)
Mechanobiology: Cell Clusters
Explores methods to measure cell mechanics using various substrates and discusses the mechanics of cell clusters and epithelial tissues.
Suspensions and Emulsions: Phenomenology
Explores suspensions, emulsions, interaction forces, stability factors, and emulsion types.
Biofabrication and Bioprinting
Explores biofabrication and bioprinting, covering automated generation of functional products from living cells, biomaterials, and bioactive molecules, along with challenges and advancements in tissue engineering.
Show more