Time-of-flight mass spectrometry (TOFMS) is a method of mass spectrometry in which an ion's mass-to-charge ratio is determined by a time of flight measurement. Ions are accelerated by an electric field of known strength. This acceleration results in an ion having the same kinetic energy as any other ion that has the same charge. The velocity of the ion depends on the mass-to-charge ratio (heavier ions of the same charge reach lower speeds, although ions with higher charge will also increase in velocity). The time that it subsequently takes for the ion to reach a detector at a known distance is measured. This time will depend on the velocity of the ion, and therefore is a measure of its mass-to-charge ratio. From this ratio and known experimental parameters, one can identify the ion.
The potential energy of a charged particle in an electric field is related to the charge of the particle and to the strength of the electric field:
where Ep is potential energy, q is the charge of the particle, and U is the electric potential difference (also known as voltage).
When the charged particle is accelerated into time-of-flight tube (TOF tube or flight tube) by the voltage U, its potential energy is converted to kinetic energy. The kinetic energy of any mass is:
In effect, the potential energy is converted to kinetic energy, meaning that equations () and () are equal
The velocity of the charged particle after acceleration will not change since it moves in a field-free time-of-flight tube. The velocity of the particle can be determined in a time-of-flight tube since the length of the path (d) of the flight of the ion is known and the time of the flight of the ion (t) can be measured using a transient digitizer or time to digital converter.
Thus,
and we substitute the value of v in () into ().
Rearranging () so that the flight time is expressed by everything else:
Taking the square root yields the time,
These factors for the time of flight have been grouped purposely. contains constants that in principle do not change when a set of ions are analyzed in a single pulse of acceleration.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal is to provide students with a complete overview of the principles and key applications of modern mass spectrometry and meet the current practical demand of EPFL researchers to improve structu
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec
The course treats the main surface analysis methods for the characterization of surfaces, interfaces and thin films. It discusses how these methods can be applied to gain specific knowledge about stru
Liquid chromatography–mass spectrometry (LC–MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography - MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides spectral information that may help to identify (or confirm the suspected identity of) each separated component.
Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a mass spectrum, a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is used in many different fields and is applied to pure samples as well as complex mixtures. A mass spectrum is a type of plot of the ion signal as a function of the mass-to-charge ratio.
, , , , ,
This work addresses the need for precise control of thin film sputtering processes to enable thin film material tailoring on the example of zinc tin nitride (ZTN) thin films deposited via microwave plasma-assisted high power reactive magnetron sputtering ( ...
Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin ...
At CERN's Large Hadron Collider (LHC), proton and heavy-ion beams are accelerated to multi-TeV energies to be collided for the needs of the scientific community around the world. The total stored beam energy of tens to hundreds ofMJ creates potential threa ...