Künneth theoremIn mathematics, especially in homological algebra and algebraic topology, a Künneth theorem, also called a Künneth formula, is a statement relating the homology of two objects to the homology of their product. The classical statement of the Künneth theorem relates the singular homology of two topological spaces X and Y and their product space . In the simplest possible case the relationship is that of a tensor product, but for applications it is very often necessary to apply certain tools of homological algebra to express the answer.
Spectral sequenceIn homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by , they have become important computational tools, particularly in algebraic topology, algebraic geometry and homological algebra. Motivated by problems in algebraic topology, Jean Leray introduced the notion of a sheaf and found himself faced with the problem of computing sheaf cohomology.
Connected sumIn mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces. More generally, one can also join manifolds together along identical submanifolds; this generalization is often called the fiber sum. There is also a closely related notion of a connected sum on knots, called the knot sum or composition of knots.
Quasi-isomorphismIn homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism A → B of chain complexes (respectively, cochain complexes) such that the induced morphisms of homology groups (respectively, of cohomology groups) are isomorphisms for all n. In the theory of , quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory.
Hochschild homologyIn mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by for algebras over a field, and extended to algebras over more general rings by . Let k be a field, A an associative k-algebra, and M an A-bimodule. The enveloping algebra of A is the tensor product of A with its opposite algebra.
Smith normal formIn mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix.
Topological combinatoricsThe mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics. The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this turned into the field of algebraic topology. In 1978 the situation was reversed—methods from algebraic topology were used to solve a problem in combinatorics—when László Lovász proved the Kneser conjecture, thus beginning the new field of topological combinatorics.
Topological data analysisIn applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology. Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging. TDA provides a general framework to analyze such data in a manner that is insensitive to the particular metric chosen and provides dimensionality reduction and robustness to noise. Beyond this, it inherits functoriality, a fundamental concept of modern mathematics, from its topological nature, which allows it to adapt to new mathematical tools.
Hairy ball theoremThe hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous tangent vector field on even-dimensional n-spheres. For the ordinary sphere, or 2‐sphere, if f is a continuous function that assigns a vector in R3 to every point p on a sphere such that f(p) is always tangent to the sphere at p, then there is at least one pole, a point where the field vanishes (a p such that f(p) = 0).
Analysis Situs (paper)"Analysis Situs" is a seminal mathematics paper that Henri Poincaré published in 1895. Poincaré published five supplements to the paper between 1899 and 1904. These papers provided the first systematic treatment of topology and revolutionized the subject by using algebraic structures to distinguish between non-homeomorphic topological spaces, founding the field of algebraic topology.