The Hall effect is the production of a potential difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879. The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current. History of electromagnetic theory The modern theory of electromagnetism was systematized by James Clerk Maxwell in the paper "On Physical Lines of Force", which was published in four parts between 1861 and 1862. While Maxwell's paper established a solid mathematical basis for electromagnetic theory, the detailed mechanisms of the theory were still being explored. One such question was about the details of the interaction between magnets and electric current, including whether magnetic fields interacted with the conductors or the electric current itself. In 1879 Edwin Hall was exploring this interaction, and discovered the Hall effect while he was working on his doctoral degree at Johns Hopkins University in Baltimore, Maryland. Eighteen years before the electron was discovered, his measurements of the tiny effect produced in the apparatus he used were an experimental tour de force, published under the name "On a New Action of the Magnet on Electric Currents". The term ordinary Hall effect can be used to distinguish the effect described in the introduction from a related effect which occurs across a void or hole in a semiconductor or metal plate when current is injected via contacts that lie on the boundary or edge of the void. The charge then flows outside the void, within the metal or semiconductor material. The effect becomes observable, in a perpendicular applied magnetic field, as a Hall voltage appearing on either side of a line connecting the current-contacts.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
MICRO-330: Sensors
Principes physiques et électronique utilisés dans les capteurs. Applications des capteurs.
PHYS-309: Solid state physics I
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
MSE-484: Properties of semiconductors and related nanostructures
This course explains the origin of optical and electrical properties of semiconductors. The course elaborates how they change when the semiconductors are reduced to sizes of few nanometers. The course
Show more
Related lectures (28)
Ohm's Law: Generalized and Scalar
Covers the generalized and scalar Ohm's law, the Hall and Ettingshausen effects.
Semi-classical Electron Motion in Solids
Explores semi-classical electron motion in solids, including band behavior, effective mass, magnetic fields, and conductance.
Magnetic Sensors: AMR and GMR
Explores AMR and GMR sensors, their principles, sensitivity to weak fields, and applications.
Show more
Related publications (286)
Related concepts (20)
Magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets.
Plasma (physics)
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
Electrical resistivity and conductivity
Electrical resistivity (also called volume resistivity or specific electrical resistance) is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m).
Show more
Related MOOCs (22)
Electronics
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronics
Introduction à l’électronique analogique- première partie. Fonctions de base réalisées à l’aide des amplificateurs opérationnels.
Electronics
Introduction à l’électronique analogique- seconde partie. Fonctions linéaires de base réalisée à l’aide de transistor bipolaire.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.