Related publications (15)

Lie groups as permutation groups: Ulam's problem in the nilpotent case

Nicolas Monod

Ulam asked whether every connected Lie group can be represented on a countable structure. This is known in the linear case. We establish it for the first family of non-linear groups, namely in the nilpotent case. Further context is discussed to illustrate ...
WALTER DE GRUYTER GMBH2022

Hyperbolicity as an obstruction to smoothability for one-dimensional actions

Yash Lodha

Ghys and Sergiescu proved in the 1980s that Thompson's group T, and hence F, admits actions by C-infinity diffeomorphisms of the circle. They proved that the standard actions of these groups are topologically conjugate to a group of C-infinity diffeomorphi ...
GEOMETRY & TOPOLOGY PUBLICATIONS2019

Revisiting the nilpotent polynomial Hales–Jewett theorem

Florian Karl Richter

Answering a question posed by Bergelson and Leibman in [6], we establish a nilpotent version of the Polynomial Hales–Jewett Theorem that contains the main theorem in [6] as a special case. Important to the formulation and the proof of our main theorem is t ...
2017

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.