Résumé
En mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local. Si la valeur absolue est archimédienne, alors K est isomorphe soit au corps des nombres réels, soit au corps des nombres complexes. Si K est un corps local dont la valeur absolue est non archimédienne, l'anneau O des entiers de K est la boule unité fermée (compacte). C'est un anneau de valuation discrète. Le corps résiduel de K est le quotient de son anneau d'entiers par l'idéal maximal de cet anneau (la boule unité ouverte). La caractéristique résiduelle de K est la caractéristique de son corps résiduel. Le corps résiduel est compact et discret donc fini, si bien que la caractéristique résiduelle est un nombre premier. Deux cas de figure se présentent, selon que la caractéristique de K est ou non égale à sa caractéristique résiduelle : En cas d'inégale caractéristique, le corps K est nécessairement de caractéristique nulle, et il est isomorphe à une extension finie du corps des nombres p-adiques, où p désigne la caractéristique résiduelle de K ; un tel corps est appelé corps de nombres p-adiques. En cas d'égale caractéristique, le corps K est isomorphe au corps des séries formelles de Laurent à coefficients dans son corps résiduel. Les corps locaux non archimédiens sont donc les corps complets pour une certaine valuation discrète et dont le corps résiduel est fini. Certains auteurs considèrent une notion plus générale, en demandant que le corps résiduel soit seulement parfait. Ces corps sont soumis à la théorie du corps de classes local. Il est possible d'élargir la définition équivalente ci-dessus d'un corps local non archimédien en autorisant les corps non commutatifs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (77)
PHYS-595: Engineering internship (master in nuclear engineering)
The main objective of the 12-week internship is to expose master's students to the industrial work environment within the field of nuclear energy.
MATH-417: Number theory II.b - selected topics
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
PHYS-462: Quantum transport in mesoscopic systems
This course will focus on the electron transport in semiconductors, with emphasis on the mesoscopic systems. The aim is to understand the transport of electrons in low dimensional systems, where even
Afficher plus
Séances de cours associées (80)
Dérivés fonctionnels
Couvre le concept de dérivés fonctionnels et leur processus de calcul avec des exemples.
Champs finis: Construction et propriétés
Explore la construction et les propriétés des champs finis, y compris les polynômes irréductibles et le Théorème des Restes Chinois.
Formes harmoniques et surfaces de Riemann
Explore les formes harmoniques sur les surfaces de Riemann, couvrant l'unicité des solutions et l'identité bilinéaire de Riemann.
Afficher plus
Publications associées (95)
Concepts associés (16)
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Groupe de Galois
En mathématiques, et plus spécifiquement en algèbre dans le cadre de la théorie de Galois, le groupe de Galois d'une extension de corps L sur un corps K est le groupe des automorphismes de corps de L laissant K invariant. Le groupe de Galois est souvent noté Gal(L/K). Si l'extension possède de bonnes propriétés, c’est-à-dire si elle est séparable et normale, on parle alors d'extension de Galois et les hypothèses du théorème fondamental de la théorie de Galois sont réunies.
Endomorphisme de Frobenius
En mathématiques, l'endomorphisme de Frobenius, nommé ainsi en l'honneur de Georg Ferdinand Frobenius, est un endomorphisme d'anneau commutatif défini de façon naturelle à partir de la caractéristique. Il est particulièrement utilisé dans le contexte de la théorie de Galois, soit dans le cas des corps de caractéristique non nulle et plus spécifiquement dans le cas des corps finis et dans la théorie des corps de classes. Si le corps est fini, il s'agit alors d'un automorphisme.
Afficher plus
MOOCs associés (1)
The Radio Sky II: Observational Radio Astronomy
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation