Résumé
En mathématiques, un corps local est un corps commutatif topologique localement compact pour une topologie non discrète. Sa topologie est alors définie par une valeur absolue. Les corps locaux interviennent de façon fondamentale en théorie algébrique des nombres. Si k est un corps fini, le corps k((X)) des séries formelles de Laurent à coefficients dans k est un corps local. Tout complété d'un corps de nombres (ou plus généralement un corps global) pour une valuation non triviale est un corps local. Si la valeur absolue est archimédienne, alors K est isomorphe soit au corps des nombres réels, soit au corps des nombres complexes. Si K est un corps local dont la valeur absolue est non archimédienne, l'anneau O des entiers de K est la boule unité fermée (compacte). C'est un anneau de valuation discrète. Le corps résiduel de K est le quotient de son anneau d'entiers par l'idéal maximal de cet anneau (la boule unité ouverte). La caractéristique résiduelle de K est la caractéristique de son corps résiduel. Le corps résiduel est compact et discret donc fini, si bien que la caractéristique résiduelle est un nombre premier. Deux cas de figure se présentent, selon que la caractéristique de K est ou non égale à sa caractéristique résiduelle : En cas d'inégale caractéristique, le corps K est nécessairement de caractéristique nulle, et il est isomorphe à une extension finie du corps des nombres p-adiques, où p désigne la caractéristique résiduelle de K ; un tel corps est appelé corps de nombres p-adiques. En cas d'égale caractéristique, le corps K est isomorphe au corps des séries formelles de Laurent à coefficients dans son corps résiduel. Les corps locaux non archimédiens sont donc les corps complets pour une certaine valuation discrète et dont le corps résiduel est fini. Certains auteurs considèrent une notion plus générale, en demandant que le corps résiduel soit seulement parfait. Ces corps sont soumis à la théorie du corps de classes local. Il est possible d'élargir la définition équivalente ci-dessus d'un corps local non archimédien en autorisant les corps non commutatifs.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.