Fractional idealIn mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity. Let be an integral domain, and let be its field of fractions.
Class number problemIn mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields (for negative integers d) having class number n. It is named after Carl Friedrich Gauss. It can also be stated in terms of discriminants. There are related questions for real quadratic fields and for the behavior as .
Class number formulaIn number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function. We start with the following data: K is a number field. [K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings of K, and 2r2 is the number of complex embeddings of K. ζK(s) is the Dedekind zeta function of K. hK is the class number, the number of elements in the ideal class group of K. RegK is the regulator of K. wK is the number of roots of unity contained in K.
Ideal normIn commutative algebra, the norm of an ideal is a generalization of a norm of an element in the field extension. It is particularly important in number theory since it measures the size of an ideal of a complicated number ring in terms of an ideal in a less complicated ring. When the less complicated number ring is taken to be the ring of integers, Z, then the norm of a nonzero ideal I of a number ring R is simply the size of the finite quotient ring R/I.
Minkowski's boundIn algebraic number theory, Minkowski's bound gives an upper bound of the norm of ideals to be checked in order to determine the class number of a number field K. It is named for the mathematician Hermann Minkowski. Let D be the discriminant of the field, n be the degree of K over , and be the number of complex embeddings where is the number of real embeddings. Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound Minkowski's constant for the field K is this bound MK.
Fundamental unit (number theory)In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic). Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units.
Binary quadratic formIn mathematics, a binary quadratic form is a quadratic homogeneous polynomial in two variables where a, b, c are the coefficients. When the coefficients can be arbitrary complex numbers, most results are not specific to the case of two variables, so they are described in quadratic form. A quadratic form with integer coefficients is called an integral binary quadratic form, often abbreviated to binary quadratic form. This article is entirely devoted to integral binary quadratic forms.
Regular primeIn number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... . In 1850, Kummer proved that Fermat's Last Theorem is true for a prime exponent p if p is regular.
Complex multiplicationIn mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice. It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points.
Heegner numberIn number theory, a Heegner number (as termed by Conway and Guy) is a square-free positive integer d such that the imaginary quadratic field has class number 1. Equivalently, the ring of algebraic integers of has unique factorization. The determination of such numbers is a special case of the class number problem, and they underlie several striking results in number theory. According to the (Baker–)Stark–Heegner theorem there are precisely nine Heegner numbers: This result was conjectured by Gauss and proved up to minor flaws by Kurt Heegner in 1952.