Idéal fractionnairevignette|Richard Dedekind donne en 1876 la définition d'idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.
Problème du nombre de classes pour les corps quadratiques imaginairesEn mathématiques, le problème du nombre de classes de Gauss pour les corps quadratiques imaginaires, au sens usuel, est de fournir pour chaque entier n ≥ 1, la liste complète des corps quadratiques imaginaires dont l'anneau des entiers a un nombre de classes égal à n. C'est une question de calcul effectif. La première démonstration (Hans Heilbronn, 1934) qu'une telle liste est finie ne fournissait pas, même en théorie, un moyen de la calculer (voir Résultats effectifs en théorie des nombres).
Formule du nombre de classesEn théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind. Nous partons des données suivantes : K est un corps de nombres. où est le nombre de plongements réels de K, et plongements complexes K. la fonction zêta de Dedekind de K. le nombre de classes, le cardinal du groupe des classes d'idéaux de K. le régulateur de K. le nombre de racines de l'unité dans K. est le discriminant de l'extension .
Norme d'idéalEn algèbre commutative, la norme d'un idéal est une généralisation de la notion de norme d'un élément dans une extension de corps. Il est particulièrement important en théorie des nombres puisqu'il mesure la taille d'un idéal d'un anneau d'entiers R a priori compliqué en fonction d'un idéal dans un anneau plus simple. Lorsque l'anneau plus simple est Z, la norme d'un idéal non nul I de R est simplement le cardinal de l'anneau quotient fini R/I. Soit A un anneau de Dedekind, K son corps des fractions et B sa fermeture intégrale dans une extension finie séparable L de K.
Borne de MinkowskiEn théorie algébrique des nombres, la borne de Minkowski donne un majorant de la norme des idéaux à considérer pour déterminer le nombre de classes d'un corps de nombres K. Il porte le nom du mathématicien Hermann Minkowski. Soit D le discriminant de K, n son degré sur , et le nombre de plongements complexes où est le nombre de plongements réels. Alors chaque classe du groupe des classes d'idéaux de K contient un idéal de O dont la norme est inférieure ou égale à la borne de Minkowski La constante de Minkowski pour le corps K est cette borne MK.
Fundamental unit (number theory)In algebraic number theory, a fundamental unit is a generator (modulo the roots of unity) for the unit group of the ring of integers of a number field, when that group has rank 1 (i.e. when the unit group modulo its torsion subgroup is infinite cyclic). Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units.
Forme quadratique binaireEn mathématiques, une forme quadratique binaire est une forme quadratique — c'est-à-dire un polynôme homogène de degré 2 — en deux variables : Les propriétés d'une telle forme dépendent de façon essentielle de la nature des coefficients a, b, c, qui peuvent être par exemple des nombres réels ou rationnels ou, ce qui rend l'étude plus délicate, entiers. Fermat considérait déjà des formes quadratiques binaires entières, en particulier pour son théorème des deux carrés.
Nombre premier régulierEn mathématiques, un nombre premier p > 2 est dit régulier si une certaine propriété liée aux racines du polynôme X – 1 est vérifiée. Cette notion a été introduite par Ernst Kummer en 1847, en vue de démontrer le « dernier théorème de Fermat », dans un article intitulé . Un nombre premier impair p est dit régulier s'il ne divise pas le nombre de classes du corps cyclotomique Q(ζp), où ζp est une racine primitive p-ième de l'unité.
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Nombre de HeegnerEn théorie des nombres, un nombre de Heegner est un entier positif n sans facteur carré tel que l'anneau des entiers du corps quadratique imaginaire Q[i] est principal (ou encore : factoriel, ce qui ici est équivalent car l'anneau est de Dedekind). Le théorème de Stark-Heegner indique qu'il y a exactement neuf nombres de Heegner :1, 2, 3, 7, 11, 19, 43, 67 et 163 (). Ce résultat était conjecturé par Gauss et démontré, à quelques erreurs près, par Kurt Heegner en 1952.