Quaternion groupIn group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation where e is the identity element and commutes with the other elements of the group. Another presentation of Q8 is The quaternion group Q8 has the same order as the dihedral group D4, but a different structure, as shown by their Cayley and cycle graphs: In the diagrams for D4, the group elements are marked with their action on a letter F in the defining representation R2.
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
Binary tetrahedral groupIn mathematics, the binary tetrahedral group, denoted 2T or , is a certain nonabelian group of order 24. It is an extension of the tetrahedral group T or (2,3,3) of order 12 by a cyclic group of order 2, and is the of the tetrahedral group under the 2:1 covering homomorphism Spin(3) → SO(3) of the special orthogonal group by the spin group. It follows that the binary tetrahedral group is a discrete subgroup of Spin(3) of order 24. The complex reflection group named 3(24)3 by G.C.
Binary octahedral groupIn mathematics, the binary octahedral group, name as 2O or is a certain nonabelian group of order 48. It is an extension of the chiral octahedral group O or (2,3,4) of order 24 by a cyclic group of order 2, and is the of the octahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary octahedral group is a discrete subgroup of Spin(3) of order 48.
Binary icosahedral groupIn mathematics, the binary icosahedral group 2I or is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the of the icosahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary icosahedral group is a discrete subgroup of Spin(3) of order 120. It should not be confused with the full icosahedral group, which is a different group of order 120, and is rather a subgroup of the orthogonal group O(3).
Binary cyclic groupIn mathematics, the binary cyclic group of the n-gon is the cyclic group of order 2n, , thought of as an extension of the cyclic group by a cyclic group of order 2. Coxeter writes the binary cyclic group with angle-brackets, ⟨n⟩, and the index 2 subgroup as (n) or [n]+. It is the binary polyhedral group corresponding to the cyclic group. In terms of binary polyhedral groups, the binary cyclic group is the preimage of the cyclic group of rotations () under the 2:1 covering homomorphism of the special orthogonal group by the spin group.
Cycle graph (algebra)In group theory, a subfield of abstract algebra, a group cycle graph illustrates the various cycles of a group and is particularly useful in visualizing the structure of small finite groups. A cycle is the set of powers of a given group element a, where an, the n-th power of an element a is defined as the product of a multiplied by itself n times. The element a is said to generate the cycle. In a finite group, some non-zero power of a must be the group identity, e; the lowest such power is the order of the cycle, the number of distinct elements in it.
Presentation of a groupIn mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.
Dihedral groupIn mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, D_n or Dih_n refers to the symmetries of the n-gon, a group of order 2n. In abstract algebra, D_2n refers to this same dihedral group.
Semidirect productIn mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: an inner semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. an outer semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation.