In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R. As a simple example, the cyclic group of order n has the presentation where 1 is the group identity. This may be written equivalently as thanks to the convention that terms that do not include an equals sign are taken to be equal to the group identity. Such terms are called relators, distinguishing them from the relations that do include an equals sign. Every group has a presentation, and in fact many different presentations; a presentation is often the most compact way of describing the structure of the group. A closely related but different concept is that of an absolute presentation of a group. A free group on a set S is a group where each element can be uniquely described as a finite length product of the form: where the si are elements of S, adjacent si are distinct, and ai are non-zero integers (but n may be zero). In less formal terms, the group consists of words in the generators and their inverses, subject only to canceling a generator with an adjacent occurrence of its inverse. If G is any group, and S is a generating subset of G, then every element of G is also of the above form; but in general, these products will not uniquely describe an element of G. For example, the dihedral group D8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D8 is a product of rs and fs. However, we have, for example, rfr = f−1, r7 = r−1, etc., so such products are not unique in D8.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (29)
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
ENG-626: Ma thèse en 180 secondes
The aim of the course is to improve the students communication skills. They will learn to summarize the methodology and conclusions of their thesis in 180 seconds and communicate clearly, accurately,
LEARN-701: JDPLS Summer school
Two-day Summer School , location TBD with JDPLS thesis directors and students. Students presente their recent research and take part in small-group discussions. Two keynote speakers will give presenta
Show more
Related lectures (50)
Proof of Sylow Subgroup Properties
Explores the properties of p-subgroups of Sylow in a group.
Combinatorial Group Theory
Introduces combinatorial group theory, emphasizing group presentations, normal subgroups, and group quotients.
Abelian p-groups: Groupes abéliens
Focuses on abelian p-groups, demonstrating technical results for classifying finite abelian groups.
Show more
Related publications (30)

Unramified F-divided objects and the etale fundamental pro-groupoid in positive characteristic

Giulio Orecchia

Let X /S be a flat algebraic stack of finite presentation. We define a new & eacute;tale fundamental pro-groupoid pi(1)(X /S), generalizing Grothendieck's enlarged & eacute;tale fundamental group from SGA 3 to the relative situation. When S is of equal pos ...
GEOMETRY & TOPOLOGY PUBLICATIONS2022

Load bearing device

Corentin Jean Dominique Fivet, Jan Friedrich Georg Brütting, Dario Redaelli, Alex-Manuel Muresan

The present relates to a device being used in modular building construction comprising at least one flat load support comprising a first main face and a second main face, at least one elongated load support designed for being coupled with said flat load su ...
2021

Simple groups of birational transformations in dimension two

We classify simple groups that act by birational transformations on compact complex Kahler surfaces. Moreover, we show that every finitely generated simple group that acts non-trivially by birational transformations on a projective surface over an arbitrar ...
2020
Show more
Related people (1)
Related concepts (34)
Dihedral group
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. The notation for the dihedral group differs in geometry and abstract algebra. In geometry, D_n or Dih_n refers to the symmetries of the n-gon, a group of order 2n. In abstract algebra, D_2n refers to this same dihedral group.
Word problem for groups
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, the word problem for a finitely generated group G is the algorithmic problem of deciding whether two words in the generators represent the same element. More precisely, if A is a finite set of generators for G then the word problem is the membership problem for the formal language of all words in A and a formal set of inverses that map to the identity under the natural map from the free monoid with involution on A to the group G.
Free group
In mathematics, the free group FS over a given set S consists of all words that can be built from members of S, considering two words to be different unless their equality follows from the group axioms (e.g. st = suu−1t, but s ≠ t−1 for s,t,u ∈ S). The members of S are called generators of FS, and the number of generators is the rank of the free group. An arbitrary group G is called free if it is isomorphic to FS for some subset S of G, that is, if there is a subset S of G such that every element of G can be written in exactly one way as a product of finitely many elements of S and their inverses (disregarding trivial variations such as st = suu−1t).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.