En topologie, une boule est un type de voisinage particulier dans un espace métrique. Le nom évoque, à juste titre, la boule solide dans l'espace usuel à trois dimensions, mais la notion se généralise entre autres à des espaces de dimension plus grande (ou plus petite) ou encore de norme non euclidienne. Dans ce cas, une boule peut ne pas être « ronde » au sens usuel du terme.
Dans l'espace usuel comme dans n'importe quel espace métrique :
la boule fermée centrée en un point et de rayon réel est l'ensemble des points dont la distance à est inférieure ou égale à :
la boule ouverte correspondante est l'ensemble des points dont la distance à est strictement inférieure à :
Dans un espace vectoriel normé, la boule unité ouverte est la boule ouverte centrée à l'origine et de rayon 1 (de même, la boule unité fermée est la boule fermée ).
Les boules d'un plan euclidien sont aussi appelées des disques.
Remarque : la définition des boules peut être étendue aux espaces pseudométriques qui généralisent la notion d'espace métrique.
Dans l'espace à deux dimensions , pour les trois normes qui suivent, les boules de rayon 1 correspondantes ont des formes différentes.
la norme 1 :
la norme euclidienne :
la norme « infinie » : N(x,y)=sup(x-y)
Propriétés
Une boule ouverte est toujours un ouvert de l'espace métrique dans lequel elle est définie. De même, une boule fermée est toujours un fermé.
Une boule ouverte de rayon strictement positif est d'intérieur non vide (puisque cet intérieur est la boule elle-même).
Toutes les boules d'un espace métrique sont des parties bornées.
Dans un espace vectoriel normé, toutes les boules ouvertes (resp. fermées) de rayons strictement positifs sont semblables par translation et homothétie, et toute boule est symétrique par rapport à son centre.
Dans un espace vectoriel normé réel ou complexe, les boules sont convexes.
Dans un espace vectoriel réel normé, l'intérieur d'une boule fermée est la boule ouverte de même centre et de même rayon, et l'adhérence d'une boule ouverte non vide est la boule fermée correspondante (par conséquent, la frontière d'une boule non vide est la sphère correspondante).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course aims to introduce the basic concepts and results on metric embeddings, or more precisely on approximate embeddings. This area has been under rapid development since the 90's and it has stro
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
En mathématiques, la notion de partie bornée (ou, par raccourci, de borné) étend celle d'intervalle borné de réels à d'autres structures, notamment en topologie et en théorie des ordres. Selon les cas, la définition privilégie l'existence de bornes ponctuelles ou la négation de l'éloignement à l'infini. Une fonction bornée est une fonction dont l' est bornée dans l'ensemble d'arrivée. Un opérateur borné est un opérateur linéaire dont les images de bornés sont bornées également.
En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Explore l'analyse de la trajectoire d'une balle en contact avec un faisceau, en se concentrant sur les forces, les angles et les équations de mouvement.
The conjugate heat transfer in mixtures of a fluid and single granular clusters is studied in this paper using a novel lattice Boltzmann method (LBM) programmed for parallel computation on the graphics processing unit (GPU). The LBM is validated for heat c ...
We study the behaviour of a natural measure defined on the leaves of the genealogical tree of some branching processes, namely self-similar growth-fragmentation processes. Each particle, or cell, is attributed a positive mass that evolves in continuous tim ...
2022
We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C-1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C-l extension theorem by ...