In mathematics, Viète's formula is the following infinite product of nested radicals representing twice the reciprocal of the mathematical constant pi: It can also be represented as: The formula is named after François Viète, who published it in 1593. As the first formula of European mathematics to represent an infinite process, it can be given a rigorous meaning as a limit expression, and marks the beginning of mathematical analysis. It has linear convergence, and can be used for calculations of pi, but other methods before and since have led to greater accuracy. It has also been used in calculations of the behavior of systems of springs and masses, and as a motivating example for the concept of statistical independence. The formula can be derived as a telescoping product of either the areas or perimeters of nested polygons converging to a circle. Alternatively, repeated use of the half-angle formula from trigonometry leads to a generalized formula, discovered by Leonhard Euler, that has Viète's formula as a special case. Many similar formulas involving nested roots or infinite products are now known. François Viète (1540–1603) was a French lawyer, privy councillor to two French kings, and amateur mathematician. He published this formula in 1593 in his work Variorum de rebus mathematicis responsorum, liber VIII. At this time, methods for approximating pi to (in principle) arbitrary accuracy had long been known. Viète's own method can be interpreted as a variation of an idea of Archimedes of approximating the circumference of a circle by the perimeter of a many-sided polygon, used by Archimedes to find the approximation By publishing his method as a mathematical formula, Viète formulated the first instance of an infinite product known in mathematics, and the first example of an explicit formula for the exact value of pi. As the first representation in European mathematics of a number as the result of an infinite process rather than of a finite calculation, Eli Maor highlights Viète's formula as marking the beginning of mathematical analysis and Jonathan Borwein calls its appearance "the dawn of modern mathematics".
Michaël Unser, Thanh-An Michel Pham, Emmanuel Emilien Louis Soubies
John Maddocks, Ludovica Cotta-Ramusino
,