Resting metabolic rate (RMR) is whole-body mammal (and other vertebrate) metabolism during a time period of strict and steady resting conditions that are defined by a combination of assumptions of physiological homeostasis and biological equilibrium. RMR differs from basal metabolic rate (BMR) because BMR measurements must meet total physiological equilibrium whereas RMR conditions of measurement can be altered and defined by the contextual limitations. Therefore, BMR is measured in the elusive "perfect" steady state, whereas RMR measurement is more accessible and thus, represents most, if not all measurements or estimates of daily energy expenditure. Indirect calorimetry is the study or clinical use of the relationship between respirometry and bioenergetics, where the measurement of the rates of oxygen consumption, sometimes carbon dioxide production, and less often urea production is transformed to rates of energy expenditure, expressed as the ratio between i) energy and ii) the time frame of the measurement. For example, following analysis of oxygen consumption of a human subject, if 5.5 kilocalories of energy were estimated during a 5-minute measurement from a rested individual, then the resting metabolic rate equals = 1.1 kcal/min rate. Unlike some related measurements (e.g. METs), RMR itself is not referenced to body mass and has no bearing on the energy density of the metabolism. A comprehensive treatment of confounding factors on BMR measurements is demonstrated as early as 1922 in Massachusetts by Engineering Professor Frank B Sanborn, wherein descriptions of the effects of food, posture, sleep, muscular activity, and emotion provide criteria for separating BMR from RMR. In the 1780s for the French Academy of Sciences, Lavoisier, Laplace, and Seguin investigated and published relationships between direct calorimetry and respiratory gas exchanges from mammalian subjects.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (9)
Piezoelectric Sensors in Medical Instrumentation
Explores the applications of piezoelectric sensors in medical instrumentation, including implant detection and activity monitoring.
Energy Systems Overview
Covers energy systems, global challenges, and course structure.
Show more
Related publications (62)

Combining accelerometry with allometry for estimating daily energy expenditure in joules when in-lab calibration is unavailable

Kamiar Aminian, Pritish Chakravarty

Background All behaviour requires energy, and measuring energy expenditure in standard units (joules) is key to linking behaviour to ecological processes. Animal-borne accelerometers are commonly used to infer proxies of energy expenditure, termed 'dynamic ...
BMC2023

Band-of-Interest-based Channel Impulse Response Fusion for Breathing Rate Estimation with UWB

Andreas Peter Burg, Alexios Konstantinos Balatsoukas Stimming, Sitian Li

The channel impulse response (CIR) obtained from the channel estimation step of various wireless systems is a widely used source of information in wireless sensing. Breathing rate is one of the important vital signs that can be retrieved from the CIR. Rece ...
New York2023

Inter- and intra-individual variability in CO2 production and metabolic rate

Dolaana Khovalyg, Mohamad Rida

Carbon dioxide generated by the human body and exhaled (VCO2) is commonly used for ventilation controls, while the metabolic rate (i.e., energy expenditure EE) is an important parameter defining human thermal comfort in buildings. These two parameters are ...
2023
Show more
Related concepts (1)
Basal metabolic rate
Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. It is reported in energy units per unit time ranging from watt (joule/second) to ml O2/min or joule per hour per kg body mass J/(h·kg). Proper measurement requires a strict set of criteria to be met. These criteria include being in a physically and psychologically undisturbed state and being in a thermally neutral environment while in the post-absorptive state (i.e., not actively digesting food).
Related MOOCs (4)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.