Résumé
En mathématiques, et plus précisément en théorie des catégories, une catégorie concrète sur une catégorie est un couple où est une catégorie et est un foncteur fidèle. Le foncteur est appelé le foncteur d'oubli et est appelée la catégorie base pour . Si n'est pas précisée, il est sous-entendu qu'il s'agit de la catégorie des ensembles . Dans ce cas, les objets de la catégorie sont des ensembles munis de certaines structures, et les morphismes de cette catégorie sont les morphismes entre ensembles munis de ces structures. C'est cette structure que fait disparaître le foncteur d'oubli. À l'inverse, de nombreuses catégories utilisées en mathématiques sont construites à partir de la catégorie des ensembles en définissant des structures sur les ensembles et en munissant les ensembles de ces structures. Ces constructions constituent, avec les identifications appropriées, des catégories concrètes. La catégorie des espaces vectoriels à gauche sur K a pour objets les K-espaces vectoriels à gauche et pour morphismes les applications K-linéaires. Cette catégorie est concrète, le foncteur d'oubli faisant correspondre à un espace vectoriel l'ensemble sous-jacent et à une application K-linéaire l'application sous-jacente. La catégorie des espaces topologiques a pour objets les espaces topologiques et pour morphismes les applications continues. Cette catégorie est concrète, le foncteur d'oubli faisant correspondre à un espace topologique l'ensemble sous-jacent et à une application continue l'application sous-jacente. La catégorie des espaces vectoriels topologiques sur un corps topologique K et des applications K-linéaires continues peut être considérée comme une catégorie concrète ayant différentes bases, à savoir : la catégorie ; la catégorie ; la catégorie . Si et sont deux catégories concrètes sur une même base , un foncteur concret de dans est un foncteur tel que . On écrit alors . Un isomorphisme concret est un foncteur entre catégories concrètes sur qui est un isomorphisme de catégories.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.