In analytical chemistry, a rotating disk electrode (RDE) is a working electrode used in three-electrode systems for hydrodynamic voltammetry. The electrode rotates during experiments, inducing a flux of analyte to the electrode. These working electrodes are used in electrochemical studies when investigating reaction mechanisms related to redox chemistry, among other chemical phenomena. The more complex rotating ring-disk electrode can be used as a rotating disk electrode if the ring is left inactive during the experiment. The electrode includes a conductive disk embedded in an inert non-conductive polymer or resin that can be attached to an electric motor that has very fine control of the electrode's rotation rate. The disk, like any working electrode, is generally made of a noble metal or glassy carbon, however any conductive material can be used based on specific needs. The disk's rotation is usually described in terms of angular velocity. As the disk turns, some of the solution described as the hydrodynamic boundary layer is dragged by the spinning disk and the resulting centrifugal force flings the solution away from the center of the electrode. Solution flows up, perpendicular to the electrode, from the bulk to replace the boundary layer. The sum result is a laminar flow of solution towards and across the electrode. The rate of the solution flow can be controlled by the electrode's angular velocity and modeled mathematically. This flow can quickly achieve conditions in which the steady-state current is controlled by the solution flow rather than diffusion. This is a contrast to still and unstirred experiments such as cyclic voltammetry where the steady-state current is limited by the diffusion of species in solution. By running linear sweep voltammetry and other experiments at various rotation rates, different electrochemical phenomena can be investigated, including multi-electron transfer, the kinetics of a slow electron transfer, adsorption/desorption steps, and electrochemical reaction mechanisms.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
ChE-407: Electrochemical engineering
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
EE-511: Sensors in medical instrumentation
Fundamental principles and methods used for physiological signal conditioning. Electrode, optical, resistive, capacitive, inductive, and piezoelectric sensor techniques used to detect and convert phys
MSE-311: Corrosion and protection of metals + Laboratory Work
Ce cours d'introduction à la corrosion veut familiariser l'étudiant avec les mécanismes réactionnels de la corrosion, avec les différentes formes de corrosion et avec les principes de la protection co
Show more
Related lectures (35)
Hot-Fondue: A Swiss Cheesy Revolution
Introduces a revolutionary hot fondue machine for street food, ensuring perfect melted cheese at 70 degrees Celsius.
Electrochemical Processes: Theory and Applications
Explores electrochemical processes, including sedimentation current and surface tension work, with a focus on theory and applications.
Electrochemical Cells: Redox Reactions and CV Technique
Covers redox reactions, cyclic voltammetry, and electrochemical cell design for drug detection.
Show more
Related publications (354)

Electrochemical sensors modified with iron oxide nanoparticles/ nanocomposites for voltammetric detection of Pb (II) in water: A review

Sandro Carrara

Permissible limits of Pb 2+ in drinking water are being reduced from 10 mu gL -1 to 5 mu gL -1 , which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmen ...
Cell Press2024

Carbon based printed electrodes for DEAs: study of pad, inkjet, and stencil printing

Yves Perriard, Yoan René Cyrille Civet, Thomas Guillaume Martinez, Stefania Maria Aliki Konstantinidi, Armando Matthieu Walter, Simon Holzer

Dielectric elastomer actuators (DEAs) have raised interest due to their remarkable capabilities in various applications, such as soft robotics, haptic feedback systems, and biomedical devices. To harness the full potential of DEAs, the choice of the electr ...
Society of Photo-Optical Instrumentation Engineers (SPIE)2024

Membrane electrode assembly simulation of anion exchange membrane water electrolysis

Jan Van Herle, Suhas Nuggehalli Sampathkumar, Khaled Lawand, Zoé Mury

Anion exchange membrane water electrolysis (AEMWE) offers a green hydrogen production method that eliminates the need for platinum group metals (PGM) as electrocatalysts. This study employs a COMSOL (R) 6.0 model to simulate a 1x1 cm(2) Ni fibre - Raney (R ...
Amsterdam2024
Show more
Related concepts (7)
Linear sweep voltammetry
In analytical chemistry, linear sweep voltammetry is a method of voltammetry where the current at a working electrode is measured while the potential between the working electrode and a reference electrode is swept linearly in time. Oxidation or reduction of species is registered as a peak or trough in the current signal at the potential at which the species begins to be oxidized or reduced. The experimental setup for linear sweep voltammetry utilizes a potentiostat and a three-electrode setup to deliver a potential to a solution and monitor its change in current.
Rotating ring-disk electrode
In analytical chemistry, a rotating ring-disk electrode (RRDE) is a double working electrode used in hydrodynamic voltammetry, very similar to a rotating disk electrode (RDE). The electrode rotates during experiments inducing a flux of analyte to the electrode. This system used in electrochemical studies when investigating reaction mechanisms related to redox chemistry and other chemical phenomena. The difference between a rotating ring-disk electrode and a rotating disk electrode is the addition of a second working electrode in the form of a ring around the central disk of the first working electrode.
Potentiostat
A potentiostat is the electronic hardware required to control a three electrode cell and run most electroanalytical experiments. A Bipotentiostat and polypotentiostat are potentiostats capable of controlling two working electrodes and more than two working electrodes, respectively. The system functions by maintaining the potential of the working electrode at a constant level with respect to the reference electrode by adjusting the current at an auxiliary electrode.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.