Predicting particle transport in turbulent flows has a plethora of applications, some of which are: the transport of atmospheric aerosols, the deposition of blood cells in the arteries of human bodies and the atomization of fuel droplets in combustion cham ...
Particle dispersion in a periodic channel is studied using the elliptic relaxation hybrid RANS/LES (ER-HRL) model. This approach employs a four-equation linear eddy viscosity (LEV) model while in Reynolds Averaged Navier-Stokes (RANS) mode near the wall, a ...
2021
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present results from an experimental investigation of a viscous fluid driven through and around porous disks at low and moderate Reynolds number conditions: Re = O(10(-4)-10(-3)) and Re = O(1-10). Specifically, we quantify the hydrodynamic drag that the ...
The log law of the wall, joining the inner, near-wall mean velocity profile (MVP) in wall-bounded turbulent flows to the outer region, has been a permanent fixture of turbulence research for over hundred years, but there is still no general agreement on th ...
We study the behavior of solutions to the incompressible 2d Euler equations near two canonical shear flows with critical points, the Kolmogorov and Poiseuille flows, with consequences for the associated Navier-Stokes problems. We exhibit a large family of ...
In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that ...
This thesis investigates the motion and breakup of droplets in low-Reynolds-number flows, focusing on two aspects. In the first part, we study the breakup of droplets in subcritical flow conditions, when there exists a linearly stable solution for the drop ...
Mixing-length models are often used by engineers in order to take into account turbulence phenomena in a flow. This kind of model is obtained by adding a turbulent viscosity to the laminar one in Navier-Stokes equations. When the flow is confined between t ...
Understanding diffusive processes across the sediment-water interface is important for quantifying hyporheic exchanges and related biogeochemical processes (e.g., denitrification, biomass growth). Viscous, turbulent and dispersive effects all contribute to ...
The trinity of so-called "canonical" wall-bounded turbulent flows, comprising the zero pressure gradient turbulent boundary layer, abbreviated ZPG TBL, turbulent pipe flow, and channel/duct flows has continued to receive intense attention as new and more r ...