MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel, distributed algorithm on a cluster. A MapReduce program is composed of a map procedure, which performs filtering and sorting (such as sorting students by first name into queues, one queue for each name), and a reduce method, which performs a summary operation (such as counting the number of students in each queue, yielding name frequencies). The "MapReduce System" (also called "infrastructure" or "framework") orchestrates the processing by marshalling the distributed servers, running the various tasks in parallel, managing all communications and data transfers between the various parts of the system, and providing for redundancy and fault tolerance. The model is a specialization of the split-apply-combine strategy for data analysis. It is inspired by the map and reduce functions commonly used in functional programming, although their purpose in the MapReduce framework is not the same as in their original forms. The key contributions of the MapReduce framework are not the actual map and reduce functions (which, for example, resemble the 1995 Message Passing Interface standard's reduce and scatter operations), but the scalability and fault-tolerance achieved for a variety of applications by optimizing the execution engine . As such, a single-threaded implementation of MapReduce is usually not faster than a traditional (non-MapReduce) implementation; any gains are usually only seen with multi-threaded implementations on multi-processor hardware. The use of this model is beneficial only when the optimized distributed shuffle operation (which reduces network communication cost) and fault tolerance features of the MapReduce framework come into play. Optimizing the communication cost is essential to a good MapReduce algorithm. MapReduce libraries have been written in many programming languages, with different levels of optimization. A popular open-source implementation that has support for distributed shuffles is part of Apache Hadoop.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
COM-308: Internet analytics
Internet analytics is the collection, modeling, and analysis of user data in large-scale online services, such as social networking, e-commerce, search, and advertisement. This class explores a number
CS-448: Sublinear algorithms for big data analysis
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
COM-490: Large-scale data science for real-world data
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipe
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.