ConjectureIn mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Formal mathematics is based on provable truth.
Parabolic inductionIn mathematics, parabolic induction is a method of constructing representations of a reductive group from representations of its parabolic subgroups. If G is a reductive algebraic group and is the Langlands decomposition of a parabolic subgroup P, then parabolic induction consists of taking a representation of , extending it to P by letting N act trivially, and inducing the result from P to G. There are some generalizations of parabolic induction using cohomology, such as cohomological parabolic induction and Deligne–Lusztig theory.
Global fieldIn mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: Algebraic number field: A finite extension of Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of , the field of rational functions in one variable over the finite field with elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s.
Hecke characterIn number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function. A name sometimes used for Hecke character is the German term Größencharakter (often written Grössencharakter, Grossencharacter, etc.).
Tate's thesisIn number theory, Tate's thesis is the 1950 PhD thesis of completed under the supervision of Emil Artin at Princeton University. In it, Tate used a translation invariant integration on the locally compact group of ideles to lift the zeta function twisted by a Hecke character, i.e. a Hecke L-function, of a number field to a zeta integral and study its properties. Using harmonic analysis, more precisely the Poisson summation formula, he proved the functional equation and meromorphic continuation of the zeta integral and the Hecke L-function.
Induced representationIn group theory, the induced representation is a representation of a group, G, which is constructed using a known representation of a subgroup H. Given a representation of H, the induced representation is, in a sense, the "most general" representation of G that extends the given one. Since it is often easier to find representations of the smaller group H than of G, the operation of forming induced representations is an important tool to construct new representations.
Invariant theoryInvariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.
Weil groupIn mathematics, a Weil group, introduced by , is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/_W (where the superscript c denotes the commutator subgroup). For more details about Weil groups see or or .
Langlands dual groupIn representation theory, a branch of mathematics, the Langlands dual LG of a reductive algebraic group G (also called the L-group of G) is a group that controls the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute Galois group of k by a complex Lie group. There is also a variation called the Weil form of the L-group, where the Galois group is replaced by a Weil group. Here, the letter L in the name also indicates the connection with the theory of L-functions, particularly the automorphic L-functions.
Siegel modular formIn mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.