**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Irreducible polynomial

Summary

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.
Polynomial irreducibility can be considered for polynomials with coefficients in an integral domain, and there are two common definitions. Most often, a polynomial over an integral domain R is said to be irreducible if it is not the product of two polynomials that have their coefficients in R, and that are not unit in R. Equivalently, for this definition, an irreducible polynomial is an irreducible element in the rings of polynomials over R. If R is a field, the two definitions of irreducibility are equivalent. For the second definition, a polynomial is irreducible if it cannot be factored into polynomials with coefficients in the same domain that both have a positive degree. Equivalently, a polynomial is irreducible if it is irreducible over the field of fractions of the integral domain. For example, the polynomial is irreducible for the second definition, and not for the first one. On the other hand, is irreducible in for the two definitions, while it is reducible in
A polynomial that is irreducible over any field containing the coefficients is absolutely irreducible. By the fundamental theorem of algebra, a univariate polynomial is absolutely irreducible if and only if its degree is one.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (21)

Related lectures (98)

Related publications (57)

Related people (14)

Related units (1)

Related concepts (23)

Related MOOCs (9)

MATH-334: Representation theory

Study the basics of representation theory of groups and associative algebras.

MATH-310: Algebra

This is an introduction to modern algebra: groups, rings and fields.

MATH-215: Rings and fields

C'est un cours introductoire dans la théorie d'anneau et de corps.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Polynomial ring

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers.

Fundamental theorem of algebra

The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero. Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed.

Rational root theorem

In algebra, the rational root theorem (or rational root test, rational zero theorem, rational zero test or p/q theorem) states a constraint on rational solutions of a polynomial equation with integer coefficients and . Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p⁄q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a0, and q is an integer factor of the leading coefficient an.

Weyl character formula

Explores the proof of the Weyl character formula for finite-dimensional representations of semisimple Lie algebras.

Generalized Integrals: Elementary Cases

Explores elementary cases of generalized integrals, convergence criteria, and the interpretation of integrals of type i and ii.

Kirillov Paradigm for Heisenberg Group

Explores the Kirillov paradigm for the Heisenberg group and unitary representations.

The minimization of a data-fidelity term and an additive regularization functional gives rise to a powerful framework for supervised learning. In this paper, we present a unifying regularization functional that depends on an operator L\documentclass[12pt]{ ...

Grigorios Chrysos, Filippos Kokkinos

Self-attention mechanisms and non-local blocks have become crucial building blocks for state-of-the-art neural architectures thanks to their unparalleled ability in capturing long-range dependencies in the input. However their cost is quadratic with the nu ...

It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension