Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.
Night-useful spectral range techniques can sense radiation that is invisible to a human observer. Human vision is confined to a small portion of the electromagnetic spectrum called visible light. Enhanced spectral range allows the viewer to take advantage of non-visible sources of electromagnetic radiation (such as near-infrared or ultraviolet radiation). Some animals such as the mantis shrimp and trout can see using much more of the infrared and/or ultraviolet spectrum than humans.
Sufficient intensity range is simply the ability to see with very small quantities of light.
Many animals have better night vision than humans do, the result of one or more differences in the morphology and anatomy of their eyes. These include having a larger eyeball, a larger lens, a larger optical aperture (the pupils may expand to the physical limit of the eyelids), more rods than cones (or rods exclusively) in the retina, and a tapetum lucidum.
Enhanced intensity range is achieved via technological means through the use of an , gain multiplication CCD, or other very low-noise and high-sensitivity arrays of photodetectors.
All photoreceptor cells in the vertebrate eye contain molecules of photoreceptor protein which is a combination of the protein photopsin in color vision cells, rhodopsin in night vision cells, and retinal (a small photoreceptor molecule). Retinal undergoes an irreversible change in shape when it absorbs light; this change causes an alteration in the shape of the protein which surrounds the retinal, and that alteration then induces the physiological process which results in vision.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|redresse=1.2|Deux soldats américains pendant la guerre d'Irak en 2003 vus à travers un système de vision nocturne. vignette|redresse=1.2|Un aviateur de l'U.S. Army utilisant une paire de lunettes AN/AVS-6 fixées sur un casque. vignette|redresse=1.2|Des jumelles de vision nocturne expérimentales. Les jumelles de vision nocturne (JVN), aussi appelées amplificateurs de lumière résiduelle (ALR) ou intensificateurs de lumière résiduelle (ILR) sont des instruments optiques permettant de voir dans l'obscurité (vision nocturne).
Une caméra thermique capte le rayonnement infrarouge (ondes de chaleur) émis par les corps et qui varie en fonction de leur température. Une caméra thermique ne permet généralement pas de voir derrière une paroi ou un obstacle. Elle reproduit la chaleur emmagasinée par un corps, ou montre le flux thermique d'une paroi en raison d’un foyer se trouvant à l’arrière. Les vitres ainsi que les parties métalliques polies reflètent l’image thermique tels un miroir. Cette image, moins nette, peut induire un observateur en erreur.
Le tapetum lucidum (locution latine signifiant « tapis luisant »), également appelé en français « tapis clair », est une couche réfléchissante située au fond de l'œil, et qui peut plus précisément être localisée soit sur la choroïde, immédiatement à l'arrière de la rétine. Les tapis clairs situés sur la choroïde sont dits tapis choroïdiens, et on distingue les tapis choroïdiens cellulaires (tapetum cellulosum) et les tapis choroïdiens fibreux (tapetum fibrosum), selon que les éléments réfléchissants sont ou non de nature cellulaire.
At the same time, several different tutorials on available data and data tools, such as those from the Allen Institute for Brain Science, provide you with in-depth knowledge on brain atlases, gene exp
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
The MOOC on Neuro-robotics focuses on teaching advanced learners to design and construct a virtual robot and test its performance in a simulation using the HBP robotics platform. Learners will learn t
The course will discuss classic material as well as recent advances in computer vision and machine learning relevant to processing visual data -- with a primary focus on embodied intelligence and visi
This is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
The course teaches the basics of autonomous mobile robots. Both hardware (energy, locomotion, sensors) and software (signal processing, control, localization, trajectory planning, high-level control)
Sensing and imaging of light in the shortwave infrared (SWIR) range is increasingly used in various fields, including bio-imaging, remote sensing, and semiconductor process control. SWIR-sensitive organic photodetectors (OPDs) are promising because organic ...
Applications demanding imaging at low-light conditions at near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, such as quantum information science, biophotonics, space imaging, and light detection and ranging (LiDAR), have accelerated the develo ...
This book has been designed for instructors in higher education or adult training who wish to develop a new course or revise an existing one. It adopts a practical, visual, and modular approach based on the principle of constructive alignment. At its heart ...