Local ringIn mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal.
Zero divisorIn abstract algebra, an element a of a ring R is called a left zero divisor if there exists a nonzero x in R such that ax = 0, or equivalently if the map from R to R that sends x to ax is not injective. Similarly, an element a of a ring is called a right zero divisor if there exists a nonzero y in R such that ya = 0. This is a partial case of divisibility in rings. An element that is a left or a right zero divisor is simply called a zero divisor.
Rng (algebra)In mathematics, and more specifically in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a ring, but without assuming the existence of a multiplicative identity. The term rng (IPA: rʊŋ) is meant to suggest that it is a ring without i, that is, without the requirement for an identity element. There is no consensus in the community as to whether the existence of a multiplicative identity must be one of the ring axioms (see ).
Matrix (mathematics)In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example, is a matrix with two rows and three columns. This is often referred to as a "two by three matrix", a " matrix", or a matrix of dimension . Without further specifications, matrices represent linear maps, and allow explicit computations in linear algebra.
Ring theoryIn algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
Simple ringIn abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple).
Product of ringsIn mathematics, a product of rings or direct product of rings is a ring that is formed by the Cartesian product of the underlying sets of several rings (possibly an infinity), equipped with componentwise operations. It is a direct product in the . Since direct products are defined up to an isomorphism, one says colloquially that a ring is the product of some rings if it is isomorphic to the direct product of these rings.
Ring homomorphismIn ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function f : R → S such that f is: addition preserving: for all a and b in R, multiplication preserving: for all a and b in R, and unit (multiplicative identity) preserving: Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above.
Multiplicatively closed setIn abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: for all . In other words, S is closed under taking finite products, including the empty product 1. Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings. A subset S of a ring R is called saturated if it is closed under taking divisors: i.
SubringIn mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which shares the same multiplicative identity as R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R).