En mathématiques et plus précisément en algèbre linéaire, un endomorphisme autoadjoint ou opérateur hermitien est un endomorphisme d'espace de Hilbert qui est son propre adjoint (sur un espace de Hilbert réel on dit aussi endomorphisme symétrique). Le prototype d'espace de Hilbert est un espace euclidien, c'est-à-dire un espace vectoriel sur le corps des réels, de dimension finie, et muni d'un produit scalaire. L'analogue sur le corps des complexes s'appelle un espace hermitien. Sur ces espaces de Hilbert de dimension finie, un endomorphisme autoadjoint est diagonalisable dans une certaine base orthonormale et ses valeurs propres (même dans le cas complexe) sont réelles. Les applications des propriétés structurelles d'un endomorphisme autoadjoint (donc de sa forme quadratique associée) sont nombreuses. Espace de Hilbert Une telle application admet donc un adjoint (égal à ), si bien que c'est un endomorphisme de H : elle est automatiquement linéaire et (même si H est de dimension infinie) continue. On peut donc reformuler la définition en : un endomorphisme autoadjoint (ou « opérateur hermitien ») de H est un endomorphisme égal à son adjoint. Par le théorème de représentation de Riesz, il existe un isomorphisme de dans l'ensemble des formes bilinéaires (ou des formes sesquilinéaires dans le cas complexe) continues. Cette bijection, qu'ici nous noterons Φ, associe à l'endomorphisme a la forme Φa définie par : Remarque sur les formes quadratiques. Par restriction de Φ, les endomorphismes autoadjoints sont donc en bijection avec les formes bilinéaires symétriques (resp. les formes hermitiennes). Or ces dernières sont elles-mêmes en bijection avec les formes quadratiques (voir l'article Identité de polarisation). La composée de ces deux bijections associe à tout endomorphisme autoadjoint a la forme quadratique En résumé, si deux endomorphismes autoadjoints ont même forme quadratique associée alors ils sont égaux. L'isomorphisme Φ permet d'ajouter deux définitions : Par exemple pour tout endomorphisme a, l'endomorphisme autoadjoint a∘a* est toujours positif, et il est défini positif si et seulement si a est injectif.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-404: Functional analysis II
We introduce locally convex vector spaces. As an example we treat the space of test functions and the space of distributions. In the second part of the course, we discuss differential calculus in Bana
MATH-561: Spectral theory
This course is an introduction to the spectral theory of linear operators acting in Hilbert spaces. The main goal is the spectral decomposition of unbounded selfadjoint operators. We will also give el
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
Afficher plus
Concepts associés (24)
Intégration par parties
En mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715.
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Théorème spectral
En mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
Afficher plus
MOOCs associés (2)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Introduction à la Programmation Orientée Objet (en C++)
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..