Summary
The circuit topology of an electronic circuit is the form taken by the network of interconnections of the circuit components. Different specific values or ratings of the components are regarded as being the same topology. Topology is not concerned with the physical layout of components in a circuit, nor with their positions on a circuit diagram; similarly to the mathematical concept of topology, it is only concerned with what connections exist between the components. There may be numerous physical layouts and circuit diagrams that all amount to the same topology. Strictly speaking, replacing a component with one of an entirely different type is still the same topology. In some contexts, however, these can loosely be described as different topologies. For instance, interchanging inductors and capacitors in a low-pass filter results in a high-pass filter. These might be described as high-pass and low-pass topologies even though the network topology is identical. A more correct term for these classes of object (that is, a network where the type of component is specified but not the absolute value) is prototype network. Electronic network topology is related to mathematical topology. In particular, for networks which contain only two-terminal devices, circuit topology can be viewed as an application of graph theory. In a network analysis of such a circuit from a topological point of view, the network nodes are the vertices of graph theory, and the network branches are the edges of graph theory. Standard graph theory can be extended to deal with active components and multi-terminal devices such as integrated circuits. Graphs can also be used in the analysis of infinite networks. The circuit diagrams in this article follow the usual conventions in electronics; lines represent conductors, filled small circles represent junctions of conductors, and open small circles represent terminals for connection to the outside world. In most cases, impedances are represented by rectangles.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (28)
EE-406: Fundamentals of electrical circuits and systems I
This course gives you an introduction to signal processing, focusing on the Fourier transform, on signal sampling and reconstruction and the Discrete Fourier transform.
MICRO-100: Electrotechnics I
Le cours aborde les bases des circuits électriques composés d'éléments linéaires, en régime continu. Une série de méthodes de transformations sera traitée. Le régime alternatif est traité en fin de se
EE-407: Fundamentals of electrical circuits and systems II
This course provides an introduction to the theory and analysis methods of electrical circuits.
Show more