Summary
Rodents (from Latin rodere, 'to gnaw') are mammals of the order Rodentia (rouˈdEnS@), which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are rodents. They are native to all major land masses except for New Zealand, Antarctica, and several oceanic islands, though they have subsequently been introduced to most of these land masses by human activity. Rodents are extremely diverse in their ecology and lifestyles and can be found in almost every terrestrial habitat, including human-made environments. Species can be arboreal, fossorial (burrowing), saltatorial/richochetal (leaping on their hind legs), or semiaquatic. However, all rodents share several morphological features, including having only a single upper and lower pair of ever-growing incisors. Well-known rodents include mice, rats, squirrels, prairie dogs, porcupines, beavers, guinea pigs, and hamsters. Rabbits, hares, and pikas, who also have incisors that grow continuously (but have two pairs of upper incisors instead of one), were once included with them, but are now considered to be in a separate order, the Lagomorpha. Nonetheless, Rodentia and Lagomorpha are sister groups, sharing a single common ancestor and forming the clade of Glires. Most rodents are small animals with robust bodies, short limbs, and long tails. They use their sharp incisors to gnaw food, excavate burrows, and defend themselves. Most eat seeds or other plant material, but some have more varied diets. They tend to be social animals and many species live in societies with complex ways of communicating with each other. Mating among rodents can vary from monogamy, to polygyny, to promiscuity. Many have litters of underdeveloped, altricial young, while others are precocial (relatively well developed) at birth. The rodent fossil record dates back to the Paleocene on the supercontinent of Laurasia. Rodents greatly diversified in the Eocene, as they spread across continents, sometimes even crossing oceans.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (15)
Related courses (3)
BIO-610: State of the Art Topics in Neuroscience XI
The goal of the course is to increase students' knowledge in the field of Neuroscience, with a particular emphasis on neuronal circuits responsible for sensation, motor control and sensorimotor intera
BIO-615: Neural circuits for reward and aversion learning
Animals must learn from past experiences, to adapt their behavior to an ever-changing environment. Students will learn about the neuronal circuit mechanisms of reward-based learning, and of aversively
BIOENG-511: Lab methods : animal experimentation
Theoretical introduction to the ethics and principles of animal experimentation in the context of the animal models (laboratory mouse, laboratory, rat, zebrafish) used at EPFL.
Related lectures (4)
Head direction cells
Delves into head direction cells, encoding animal heading and persisting in the dark.
Engineering brain activity patterns for therapeutics
Discusses correcting aberrant brain-wide activity patterns using distinct network motifs and neuromodulators.
Preclinical Animal Models: Selection & Rationale
Explores the selection and rationale of preclinical animal models in drug development, emphasizing the 10 to 15-year path to a marketed small-molecule drug.
Show more
Related MOOCs (6)
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Cellular Mechanisms of Brain Function
This course aims for a mechanistic description of mammalian brain function at the level of individual nerve cells and their synaptic interactions.
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more