Completely metrizable spaceIn mathematics, a completely metrizable space (metrically topologically complete space) is a topological space (X, T) for which there exists at least one metric d on X such that (X, d) is a complete metric space and d induces the topology T. The term topologically complete space is employed by some authors as a synonym for completely metrizable space, but sometimes also used for other classes of topological spaces, like completely uniformizable spaces or Čech-complete spaces.
Dense-in-itselfIn general topology, a subset of a topological space is said to be dense-in-itself or crowded if has no isolated point. Equivalently, is dense-in-itself if every point of is a limit point of . Thus is dense-in-itself if and only if , where is the derived set of . A dense-in-itself closed set is called a perfect set. (In other words, a perfect set is a closed set without isolated point.) The notion of dense set is unrelated to dense-in-itself. This can sometimes be confusing, as "X is dense in X" (always true) is not the same as "X is dense-in-itself" (no isolated point).
Algebraic fractionIn algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are and . Algebraic fractions are subject to the same laws as arithmetic fractions. A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus is a rational fraction, but not because the numerator contains a square root function. In the algebraic fraction , the dividend a is called the numerator and the divisor b is called the denominator.
Fermat curveIn mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (X:Y:Z) by the Fermat equation Therefore, in terms of the affine plane its equation is An integer solution to the Fermat equation would correspond to a nonzero rational number solution to the affine equation, and vice versa. But by Fermat's Last Theorem it is now known that (for n > 2) there are no nontrivial integer solutions to the Fermat equation; therefore, the Fermat curve has no nontrivial rational points.
Modular multiplicative inverseIn mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as which is the shorthand way of writing the statement that m divides (evenly) the quantity ax − 1, or, put another way, the remainder after dividing ax by the integer m is 1.
Dense orderIn mathematics, a partial order or total order < on a set is said to be dense if, for all and in for which , there is a in such that . That is, for any two elements, one less than the other, there is another element between them. For total orders this can be simplified to "for any two distinct elements, there is another element between them", since all elements of a total order are comparable. The rational numbers as a linearly ordered set are a densely ordered set in this sense, as are the algebraic numbers, the real numbers, the dyadic rationals and the decimal fractions.
QuotientIn arithmetic, a quotient (from quotiens 'how many times', pronounced ˈkwoʊʃənt) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division), or as a fraction or a ratio (in the case of a general division). For example, when dividing 20 (the dividend) by 3 (the divisor), the quotient is 6 (with a remainder of 2) in the first sense, and (a repeating decimal) in the second sense.
Egyptian fractionAn Egyptian fraction is a finite sum of distinct unit fractions, such as That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other. The value of an expression of this type is a positive rational number ; for instance the Egyptian fraction above sums to . Every positive rational number can be represented by an Egyptian fraction.
Rational functionIn mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers; they may be taken in any field K. In this case, one speaks of a rational function and a rational fraction over K. The values of the variables may be taken in any field L containing K. Then the domain of the function is the set of the values of the variables for which the denominator is not zero, and the codomain is L.
Almost allIn mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if is a set, "almost all elements of " means "all elements of but those in a negligible subset of ". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null. In contrast, "almost no" means "a negligible quantity"; that is, "almost no elements of " means "a negligible quantity of elements of ". Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) except for finitely many".