Espace complètement métrisableUn espace complètement métrisable (ou espace métriquement topologiquement complet) est un espace topologique (X, T) pour lequel il existe au moins une distance d sur X telle d induit la topologie T (c'est-à-dire que X est métrisable) et fait de (X, d) un espace métrique complet. Le terme d'espace topologiquement complet est employé par certains auteurs comme synonyme despace complètement métrisable, mais parfois aussi utilisé pour d'autres classes d'espaces topologiques, comme les espaces complètement uniformisables ou les espaces Čech-complets.
Dense-in-itselfIn general topology, a subset of a topological space is said to be dense-in-itself or crowded if has no isolated point. Equivalently, is dense-in-itself if every point of is a limit point of . Thus is dense-in-itself if and only if , where is the derived set of . A dense-in-itself closed set is called a perfect set. (In other words, a perfect set is a closed set without isolated point.) The notion of dense set is unrelated to dense-in-itself. This can sometimes be confusing, as "X is dense in X" (always true) is not the same as "X is dense-in-itself" (no isolated point).
Algebraic fractionIn algebra, an algebraic fraction is a fraction whose numerator and denominator are algebraic expressions. Two examples of algebraic fractions are and . Algebraic fractions are subject to the same laws as arithmetic fractions. A rational fraction is an algebraic fraction whose numerator and denominator are both polynomials. Thus is a rational fraction, but not because the numerator contains a square root function. In the algebraic fraction , the dividend a is called the numerator and the divisor b is called the denominator.
Fermat curveIn mathematics, the Fermat curve is the algebraic curve in the complex projective plane defined in homogeneous coordinates (X:Y:Z) by the Fermat equation Therefore, in terms of the affine plane its equation is An integer solution to the Fermat equation would correspond to a nonzero rational number solution to the affine equation, and vice versa. But by Fermat's Last Theorem it is now known that (for n > 2) there are no nontrivial integer solutions to the Fermat equation; therefore, the Fermat curve has no nontrivial rational points.
Inverse modulaireEn mathématiques et plus précisément en arithmétique modulaire, l'inverse modulaire d'un entier relatif pour la multiplication modulo est un entier satisfaisant l'équation : En d'autres termes, il s'agit de l'inverse dans l'anneau des entiers modulo n, noté Z/nZ ou Z. Une fois ainsi défini, peut être noté , étant entendu implicitement que l'inversion est modulaire et se fait modulo . La définition est donc équivalente à : L'inverse de a modulo existe si et seulement si et sont premiers entre eux, (c.-à-d.
Ordre denseLa notion dordre dense est une notion de mathématiques, en lien avec la notion de relation d'ordre. Un ensemble ordonné (E, ≤) est dit dense en lui-même, ou plus simplement dense, si, pour tout couple (x, y) d'éléments de E tels que x < y il existe un élément z de E tel que x < z < y. Par exemple, tout corps totalement ordonné est dense en lui-même alors que l'anneau Z des entiers relatifs ne l'est pas.
QuotientEn mathématiques, un quotient est le résultat d'une division. Le quotient existe ou pas selon l'ensemble de nombres considéré. Dans les entiers naturels, le quotient de par n'existe que si est un multiple de . On parle alors de quotient euclidien, puisqu'il résulte d'une division euclidienne. Le mot quotient s'emploie parfois pour fraction.
Fraction égyptienneUne fraction égyptienne, ou unitaire, est une fraction de numérateur égal à un et de dénominateur entier strictement positif. Un problème classique est d'écrire une fraction comme somme de fractions égyptiennes avec des dénominateurs tous différents, que l'on nomme développement en fractions égyptiennes ou plus simplement développement égyptien. Tous les nombres rationnels positifs peuvent être écrits sous cette forme et ce, d'une infinité de façons différentes. Par exemple .
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.
Presque tousEn mathématiques, le terme « presque tous » signifie « tous sauf une quantité négligeable ». Plus précisément, si est un ensemble, « presque tous les éléments de » signifie « tous les éléments de à l'exception de ceux d'un sous-ensemble négligeable de ». La signification de « négligeable » dépend du contexte mathématique : par exemple, cela peut signifier fini, dénombrable ou de mesure nulle . En revanche, " presque aucun " signifie "un montant négligeable"; c'est-à-dire "presque aucun élément de " signifie "une quantité négligeable d'éléments de ".