Dirac measureIn mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
Complex measureIn mathematics, specifically measure theory, a complex measure generalizes the concept of measure by letting it have complex values. In other words, one allows for sets whose size (length, area, volume) is a complex number. Formally, a complex measure on a measurable space is a complex-valued function that is sigma-additive. In other words, for any sequence of disjoint sets belonging to , one has As for any permutation (bijection) , it follows that converges unconditionally (hence absolutely).
Regular measureIn mathematics, a regular measure on a topological space is a measure for which every measurable set can be approximated from above by open measurable sets and from below by compact measurable sets. Let (X, T) be a topological space and let Σ be a σ-algebra on X. Let μ be a measure on (X, Σ). A measurable subset A of X is said to be inner regular if and said to be outer regular if A measure is called inner regular if every measurable set is inner regular.
Measurable spaceIn mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Consider a set and a σ-algebra on Then the tuple is called a measurable space. Note that in contrast to a measure space, no measure is needed for a measurable space. Look at the set: One possible -algebra would be: Then is a measurable space.
Content (measure theory)In mathematics, in particular in measure theory, a content is a real-valued function defined on a collection of subsets such that That is, a content is a generalization of a measure: while the latter must be countably additive, the former must only be finitely additive. In many important applications the is chosen to be a ring of sets or to be at least a semiring of sets in which case some additional properties can be deduced which are described below. For this reason some authors prefer to define contents only for the case of semirings or even rings.
Simple functionIn the mathematical field of real analysis, a simple function is a real (or complex)-valued function over a subset of the real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values. Some authors also require simple functions to be measurable; as used in practice, they invariably are.
Locally finite measureIn mathematics, a locally finite measure is a measure for which every point of the measure space has a neighbourhood of finite measure. Let be a Hausdorff topological space and let be a -algebra on that contains the topology (so that every open set is a measurable set, and is at least as fine as the Borel -algebra on ). A measure/signed measure/complex measure defined on is called locally finite if, for every point of the space there is an open neighbourhood of such that the -measure of is finite.
Geometric measure theoryIn mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfaces that are not necessarily smooth. Geometric measure theory was born out of the desire to solve Plateau's problem (named after Joseph Plateau) which asks if for every smooth closed curve in there exists a surface of least area among all surfaces whose boundary equals the given curve.
Carathéodory's criterionCarathéodory's criterion is a result in measure theory that was formulated by Greek mathematician Constantin Carathéodory that characterizes when a set is Lebesgue measurable. Carathéodory's criterion: Let denote the Lebesgue outer measure on where denotes the power set of and let Then is Lebesgue measurable if and only if for every where denotes the complement of Notice that is not required to be a measurable set.
Spectral theory of ordinary differential equationsIn mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite.