In computer graphics, alpha compositing or alpha blending is the process of combining one image with a background to create the appearance of partial or full transparency. It is often useful to render picture elements (pixels) in separate passes or layers and then combine the resulting 2D images into a single, final image called the composite. Compositing is used extensively in film when combining elements with live footage. Alpha blending is also used in 2D computer graphics to put rasterized foreground elements over a background.
In order to combine the picture elements of the images correctly, it is necessary to keep an associated matte for each element in addition to its color. This matte layer contains the coverage information—the shape of the geometry being drawn—making it possible to distinguish between parts of the image where something was drawn and parts that are empty.
Although the most basic operation of combining two images is to put one over the other, there are many operations, or blend modes, that are used.
The concept of an alpha channel was introduced by Alvy Ray Smith and in the late 1970s at the New York Institute of Technology Computer Graphics Lab. Bruce A. Wallace derived the same straight over operator based on a physical reflectance/transmittance model in 1981. A 1984 paper by Thomas Porter and Tom Duff introduced premultiplied alpha using a geometrical approach.
The use of the term alpha is explained by Smith as follows: "We called it that because of the classic linear interpolation formula that uses the Greek letter (alpha) to control the amount of interpolation between, in this case, two images A and B". That is, when compositing image A atop image B, the value of in the formula is taken directly from A's alpha channel.
In a 2D image a color combination is stored for each picture element (pixel), often a combination of red, green and blue (RGB). When alpha compositing is in use, each pixel has an additional numeric value stored in its alpha channel, with a value ranging from 0 to 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students study and apply fundamental concepts and algorithms of computer graphics for rendering, geometry
synthesis, and animation. They design and implement their own interactive graphics program
Computer graphics deals with generating s and art with the aid of computers. Today, computer graphics is a core technology in digital photography, film, video games, digital art, cell phone and computer displays, and many specialized applications. A great deal of specialized hardware and software has been developed, with the displays of most devices being driven by computer graphics hardware. It is a vast and recently developed area of computer science. The phrase was coined in 1960 by computer graphics researchers Verne Hudson and William Fetter of Boeing.
Portable Network Graphics (PNG, officially pronounced pɪŋ , colloquially pronounced ˌpiːɛnˈdʒiː ) is a raster-graphics file that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange Format (GIF)—unofficially, the initials PNG stood for the recursive acronym "PNG's not GIF". PNG supports palette-based images (with palettes of 24-bit RGB or 32-bit RGBA colors), grayscale images (with or without an alpha channel for transparency), and full-color non-palette-based RGB or RGBA images.
Adobe Photoshop is a raster graphics editor developed and published by Adobe Inc. for Windows and macOS. It was originally created in 1987 by Thomas and John Knoll. Since then, the software has become the most used tool for professional digital art, especially in raster graphics editing. The software's name is often colloquially used as a verb (e.g. "to photoshop an image", "photoshopping", and "photoshop contest") although Adobe discourages such use.
Photometric stereo, a computer vision technique for estimating the 3D shape of objects through images captured under varying illumination conditions, has been a topic of research for nearly four decades. In its general formulation, photometric stereo is an ...
Physically-based differentiable rendering has recently emerged as an attractive new technique for solving inverse problems that recover complete 3D scene representations from images. The inversion of shape parameters is of particular interest but also pose ...
We propose a semantic shape editing method to edit 3D triangle meshes using parametric implicit surface templates, benefiting from the many advantages offered by analytical implicit representations, such as infinite resolution and boolean or blending opera ...