Floor and ceiling functionsIn mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). For example (floor), ⌊2.4⌋ = 2, ⌊−2.4⌋ = −3, and for ceiling; ⌈2.4⌉ = 3, and ⌈−2.4⌉ = −2. Historically, the floor of x has been–and still is–called the integral part or integer part of x, often denoted [x] (as well as a variety of other notations).
ExponentiationIn mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the (power of) n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases: The exponent is usually shown as a superscript to the right of the base.
Special right triangleA special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio.
NumberA number is a mathematical object used to count, measure, and label. The original examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number.
Leopold KroneckerLeopold Kronecker (ˈkʁoːnɛkɐ; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk" ("God made the integers, all else is the work of man"). Kronecker was a student and lifelong friend of Ernst Kummer. Leopold Kronecker was born on 7 December 1823 in Liegnitz, Prussia (now Legnica, Poland) in a wealthy Jewish family.
QuotientIn arithmetic, a quotient (from quotiens 'how many times', pronounced ˈkwoʊʃənt) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division), or as a fraction or a ratio (in the case of a general division). For example, when dividing 20 (the dividend) by 3 (the divisor), the quotient is 6 (with a remainder of 2) in the first sense, and (a repeating decimal) in the second sense.
Power of twoA power of two is a number of the form 2n where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In a context where only integers are considered, n is restricted to non-negative values, so there are 1, 2, and 2 multiplied by itself a certain number of times. The first ten powers of 2 for non-negative values of n are: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ... Because two is the base of the binary numeral system, powers of two are common in computer science.
E (mathematical constant)The number e, also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of natural logarithms. It is the limit of (1 + 1/n)n as n approaches infinity, an expression that arises in the study of compound interest. It can also be calculated as the sum of the infinite series It is also the unique positive number a such that the graph of the function y = ax has a slope of 1 at x = 0.
Infinite monkey theoremThe infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, including the complete works of William Shakespeare. In fact, the monkey would almost surely type every possible finite text an infinite number of times. The theorem can be generalized to state that any sequence of events which has a non-zero probability of happening will almost certainly eventually occur, given unlimited time.
Magnitude (mathematics)In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs. In physics, magnitude can be defined as quantity or distance.