Summary
Framing, in construction, is the fitting together of pieces to give a structure support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing. Building framing is divided into two broad categories, heavy-frame construction (heavy framing) if the vertical supports are few and heavy such as in timber framing, pole building framing, or steel framing; or light-frame construction (light-framing) if the supports are more numerous and smaller, such as balloon, platform, or light-steel framing. Light-frame construction using standardized dimensional lumber has become the dominant construction method in North America and Australia due to the economy of the method; use of minimal structural material allows builders to enclose a large area at minimal cost while achieving a wide variety of architectural styles. Modern light-frame structures usually gain strength from rigid panels (plywood and other plywood-like composites such as oriented strand board (OSB) used to form all or part of wall sections), but until recently carpenters employed various forms of diagonal bracing to stabilize walls. Diagonal bracing remains a vital interior part of many roof systems, and in-wall wind braces are required by building codes in many municipalities or by individual state laws in the United States. Special framed shear walls are becoming more common to help buildings meet the requirements of earthquake engineering and wind engineering. Historically, people fitted naturally shaped wooden poles together as framework and then began using joints to connect the timbers, a method today called traditional timber framing or log framing. In the United States, timber framing was superseded by balloon framing beginning in the 1830s.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (22)
CIVIL-235: Design of steel structures
Ce cours permet de maitriser les aspects fondamentaux et pratiques du dimensionnement des structures en acier. Il traite des poutres, des poteaux, des assemblages, des cadres, des systèmes porteurs et
CIVIL-369: Structural stability
Advanced topics in structural stability; elastic & inelastic column buckling; lateral-torsional buckling of bridge/plate girders; nonlinear geometric effects; frame stability; computational formulatio
CIVIL-123: Structures II
Le cours permet de comprendre le fonctionnement, déterminer les efforts et de dimensionner les structures en treillis, en poutre, en dalle et en cadre. Le cours se base sur la résolution des efforts p
Show more
Related MOOCs (1)
Advanced Timber Plate Structural Design
A trans-disciplinary approach in structural design and digital architecture of timber structures with advanced manufacturing workflow.